|试卷下载
终身会员
搜索
    上传资料 赚现金
    上海市东昌中学2023-2024学年高二下学期期中考试数学试题
    立即下载
    加入资料篮
    上海市东昌中学2023-2024学年高二下学期期中考试数学试题01
    上海市东昌中学2023-2024学年高二下学期期中考试数学试题02
    上海市东昌中学2023-2024学年高二下学期期中考试数学试题03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市东昌中学2023-2024学年高二下学期期中考试数学试题

    展开
    这是一份上海市东昌中学2023-2024学年高二下学期期中考试数学试题,共13页。试卷主要包含了05,; 2, C 14,证明略等内容,欢迎下载使用。

    一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)
    1.已知直线,和平面,若,,则与的位置关系是______.
    2.已知圆锥的底面半径和高均为1,则该圆锥的表面积为______.
    3.若将一个边长为1的正方形围成一个圆柱,则该圆柱的体积为______.
    4.如图,水平放置的的斜二测直观图是图中的,若,,则边的实际长度为______.

    (第4题) (第8题) (第10题)
    5.某学校师生共有3600人,现用分层抽样方法抽取一个容量为240的样本,已知样本中教师人数为30人,则该校学生人数为______.
    6.若圆锥的侧面展开图是一个半圆,则该圆锥的母线与轴的夹角大小为______.
    7.如果直线与平面所成的角为,那么直线与平面内的直线所成的角的取值范围是______.
    8.下图为甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲、乙两名篮球运动员得分的中位数的和是______.
    9.已知,则______.
    10.圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.
    11.现有甲、乙、丙三位同学合作在一个正二十面体(如图)的各面写上0~9这10个数字(相对的两个面上的数字相同),这样就得到一个产生0~9的随机数的骰子.依次投掷这个骰子,并逐个记下朝上一面的数字,就能按顺序排成一个随机数表,若甲、乙、丙依次投掷一次,按顺序记下三个数,三个数恰好构成等差数列的概率为______.

    (第11题) (第12题)
    12.已知正四面体的棱长为,现截去四个全等的小正四面体,得到如图的八面体,若这个八面体能放进半径为的球形容器中,则截去的小正四面体的棱长最小值为______.
    二、单选题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)
    13.设、是两条不同的直线,、是两个不同的平面,则下列命题正确的是( )
    A.若,,则B.若,则
    C.若,,则D.若,,则
    14.下列说法正确的个数( )
    (1)三点确定一个平面;(2)一条直线和一个点确定一个平面;
    (3)两条直线确定一个平面;(4)三角形和梯形一定为平面图形.
    A.0B.1C.2D.3
    15.下列命题中成立的是( )
    A.各个面都是三角形的多面体一定是棱锥
    B.有两个相邻侧面是矩形的棱柱是直棱柱
    C.一个棱锥的侧面是全等的等腰三角形,那它一定是正棱锥
    D.各个侧面都是矩形的棱柱是长方体
    16.如图,正方体的棱长为6,动点、在棱上,动点、分别在棱、上,若,,(、都大于零),则四面体的体积( )
    A.与、都无关
    B.与有关,与无关
    C.与、都有关
    D.与无关,与有关
    三、解答题(本大题共有5题,满分78分)
    17.(本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分。
    正三棱柱的底面正三角形的边长为,为的中点,.
    (1)求该三棱柱的体积;
    (2)证明:平面.
    18.(本题满分14分)本题共有2个小题,第1题满分8分。第2题满分6分。
    如图,在正三棱柱中,,此三棱柱的体积为,为侧棱上点,且,、分别为、的中点.
    (1)求异面直线与所成角的大小;
    (2)求与平面所成角的大小.
    19.(本题满分14分)本题共有2个小题,第1题满分8分,第2题满分6分。
    已知四棱锥的底面为直角梯形,,,平面,且,是棱上的动点.
    (1)若,求点到平面的距离;
    (2)当是中点时,求以为直径的球被平面所截的截面面积.
    20.(本题满分18分)本题共有3个小题,第1题满分4分,第2题满分6分,第3题满分8分。
    如图,已知椭圆,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.
    (1)求椭圆的方程;
    (2)已知为的中点,,证明:对于任意的都有恒成立;
    (3)若过点作直线的平行线交椭圆于点,求的最小值.
    21.(本题满分18分)本题共有3个小题,第1题满分4分,第2题满分6分,第3题满分8分。
    已知函数(、).
    (1)当,时,求函数图象在点的切线方程;
    (2)当时,既存在极大值,又存在极小值,求实数的取值范围;
    (3)当,时,,分别为的极大值点和极小值点,且,求实数的取值范围.
    参考答案
    一、填空题
    1.; 2.; 3.; 4.; 5.; 6.; 7.; 8.; 9.; 10.; 11. 12.
    12.已知正四面体的棱长为,现截去四个全等的小正四面体,得到如图的八面体,若这个八面体能放进半径为的球形容器中,则截去的小正四面体的棱长最小值为______.

    【答案】
    【解析】如图, 取上下底面的中心分别为, 外接球的心为,连接,,
    设截去的小正四面体的棱长为, 八面体外接的半径截角四面体外接球的球心是原正四面体外接球的球心,原正四面体的棱长为, 则外接球的半径湤足,即, 可得,
    又,,解得:.
    截去的小正四面体的棱长最小值为.故答案为:.
    二、选择题
    13. C 14.B 15. B 16.B
    15.下列命题中成立的是( )
    A.各个面都是三角形的多面体一定是棱锥
    B.有两个相邻侧面是矩形的棱柱是直棱柱
    C.一个棱锥的侧面是全等的等腰三角形,那它一定是正棱锥
    D.各个侧面都是矩形的棱柱是长方体
    【答案】B
    【解析】对, 只要将底面全等的两个棱锥的底面重合在一起,
    所得多面体的每个面都是三角形, 但这个多面体不是棱锥, 如图, 故错误;
    对, 若棱柱有两个相邻侧面是矩形, 则侧棱与底面两条相交的边垂直,
    则侧棱与底面垂直, 此时棱柱一定是直棱柱, 故正确;

    对于, 如图所示, 若
    满足侧面均为全等的等腰三角形, 但此时底面不是正三角形, 故错误;
    对, 各个侧面都是矩形的棱柱不一定是长方体,比如底面为三角形的直三棱柱, 故错误.
    故选:.
    三.解答题
    17.(1) (2)证明略
    18.(1) (2)
    19.(1) (2)
    20.(本题满分18分)本题共有3个小题,第1题满分4分,第2题满分6分,第3题满分8分。
    如图,已知椭圆,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.
    (1)求椭圆的方程;
    (2)已知为的中点,,证明:对于任意的都有恒成立;
    (3)若过点作直线的平行线交椭圆于点,求的最小值.
    【答案】(1) (2)见解析 (3)
    【解析】(1)已知椭圆, 左顶点为, 经过点
    椭圆方程为:.
    (2) 设直线的方程,交轴于点,
    联立, 得

    对于任意的都有恒成立.
    (3),的方程可设为:,
    由, 得点横坐标为
    由, 得
    当且仅当, 即时取等号,
    当时,的最小值为
    21.(本题满分18分)本题共有3个小题,第1题满分4分,第2题满分6分,第3题满分8分。
    已知函数(、).
    (1)当,时,求函数图象在点的切线方程;
    (2)当时,既存在极大值,又存在极小值,求实数的取值范围;
    (3)当,时,,分别为的极大值点和极小值点,且,求实数的取值范围.
    【答案】(1) (2) (3)
    【解析】(1) 已知、), 函数定义域为,
    当时,,可得,此时,易知,
    所以函数过点的切线方程为,即为;
    (2)当时,
    可得
    因为函数既存在极大值, 又存在极小值,所以必有两个不等的实根,
    此时,令,解得或, 且,所以且;
    不妨考虑当的情况下,
    当时,单调递增; 当时,单调递减;
    当时,单调递增,
    所以函数分别在取得极大值和极小值, 满足条件,
    当的情况下,
    当时,单调递增; 当时,单调递减;
    当时,单调递增,所以函数分别在取得极大值和极小值, 满足条件,
    综上, 实数的取值范围为;
    (3) 当时,由 (2) 得..
    当时,单调递增; 当时,单调递减;
    当时,单调递增,所以在处取得极大值;
    在取得极小值,
    因为恒成立,
    所以对任意的恒成立,此时,
    则,所以,整理得,
    不妨设, 函数定义域为,
    可得
    令方程,可得,
    当, 即时,单调递增;
    所以,即, 符合条件;
    当, 即时,设方程的两个根分别为,
    可得,不妨设,
    当时,单调递减,
    所以当时,,即, 不符合条件;
    综上, 实数的取值范围为.
    相关试卷

    上海市华东师范大学附属东昌中学2023-2024学年高二(上)期末考试数学试卷(含解析): 这是一份上海市华东师范大学附属东昌中学2023-2024学年高二(上)期末考试数学试卷(含解析),共14页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。

    上海市华东师范大学附属东昌中学2023-2024学年高二上学期期末考试数学试卷: 这是一份上海市华东师范大学附属东昌中学2023-2024学年高二上学期期末考试数学试卷,共4页。

    2023-2024学年上海市华东师范大学附属东昌中学高二上学期12月月考数学试题含答案: 这是一份2023-2024学年上海市华东师范大学附属东昌中学高二上学期12月月考数学试题含答案,共14页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map