终身会员
搜索
    上传资料 赚现金

    专题01 19题新结构定义题(集合部分)(典型题型归类训练)-2024年高考数学复习解答题解题思路训练

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题01 19题新结构定义题(集合部分)(典型题型归类训练)(原卷版).docx
    • 解析
      专题01 19题新结构定义题(集合部分)(典型题型归类训练)(解析版).pdf
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(原卷版)第1页
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(原卷版)第2页
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(原卷版)第3页
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(解析版)第1页
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(解析版)第2页
    专题01 19题新结构定义题(集合部分)(典型题型归类训练)(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题01 19题新结构定义题(集合部分)(典型题型归类训练)-2024年高考数学复习解答题解题思路训练

    展开

    这是一份专题01 19题新结构定义题(集合部分)(典型题型归类训练)-2024年高考数学复习解答题解题思路训练,文件包含专题0119题新结构定义题集合部分典型题型归类训练原卷版docx、专题0119题新结构定义题集合部分典型题型归类训练解析版pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。


    (1)①若,写出所有具有性质P的数列;
    ②若,写出一个具有性质P的数列;
    (2)若,数列具有性质P,求的最大项的最小值;
    (3)已知数列均具有性质P,且对任意,当时,都有.记集合,,求中元素个数的最小值.
    2.(2023·北京西城·北京师大附中校考模拟预测)已知为有限个实数构成的非空集合,设,,记集合和其元素个数分别为,.
    设.例如当时,,,,所以.
    (1)若,求的值;
    (2)设是由3个正实数组成的集合且,证明:为定值;
    (3)若是一个各项互不相同的无穷递增正整数数列,对任意,设,.已知,且对任意,求数列的通项公式.
    3.(2023·北京·101中学校考模拟预测)设A是正整数集的一个非空子集,如果对于任意,都有或,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
    (1)直接写出的所有自邻集;
    (2)若为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
    (3)若,求证:.
    4.(2023·北京门头沟·统考一模)已知集合.若对于集合M的任意k元子集A,A中必有4个元素的和为,则称这样的正整数k为“好数”,所有“好数”的最小值记作.
    (1)当,即集合.
    (i)写出M的一个子集B,且B中存在4个元素的和为;
    (ii)写出M的一个5元子集C,使得C中任意4个元素的和大于;
    (2)证明:;
    (3)证明:.
    5.(2023·北京西城·统考一模)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.
    (1)判断集合是否具有性质?说明理由;
    (2)判断是否存在具有性质的集合,并加以证明;
    (3)若集合具有性质,证明:.
    6.(2022·北京海淀·首都师范大学附属中学校考三模)设且,集合,若对的任意元子集,都存在,满足:,且为偶数,则称为理想集,并将的最小值记为.
    (1)当时,是否存在理想集?并说明理由.
    (2)当时,是否存在理想集?若存在,求出;若不存在,请说明理由.
    (3)求.
    7.(2022·北京丰台·统考二模)设,,…,,,是个互不相同的闭区间,若存在实数使得,则称这个闭区间为聚合区间,为该聚合区间的聚合点.
    (1)已知,为聚合区间,求t的值;
    (2)已知,,…,,为聚合区间.
    (ⅰ)设,是该聚合区间的两个不同的聚合点.求证:存在k,,使得;
    (ⅱ)若对任意p,q(且p,),都有,互不包含.求证:存在不同的i,,使得.
    8.(2022·北京丰台·统考一模)已知集合(且),,且.若对任意(),当时,存在(),使得,则称是的元完美子集.
    (1)判断下列集合是否是的3元完美子集,并说明理由;
    ①; ②.
    (2)若是的3元完美子集,求的最小值;
    (3)若是(且)的元完美子集,求证:,并指出等号成立的条件.
    9.(2023·北京海淀·101中学校考模拟预测)在)个实数组成的n行n列的数表中,表示第i行第j列的数,记,若∈,且两两不等,则称此表为“n阶H表”,记
    (1)请写出一个“2阶H表”;
    (2)对任意一个“n阶H表”,若整数且,求证:为偶数;
    (3)求证:不存在“5阶H表”.
    10.(2021·北京门头沟·统考一模)对于一个非空集合A,如果集合D满足如下四个条件:①;②,;③,若且,则;④,若且,则,则称集合D为A的一个偏序关系.
    (1)设,判断集合是不是集合A的偏序关系,请你写出一个含有4个元素且是集合A的偏序关系的集合D;
    (2)证明:是实数集R的一个偏序关系:
    (3)设E为集合A的一个偏序关系,.若存在,使得,,且,若,,一定有,则称c是a和b的交,记为.证明:对A中的两个给定元素a,b,若存在,则一定唯一.
    11.(2020·北京房山·统考二模)已知集合的元素个数为且元素均为正整数,若能够将集合分成元素个数相同且两两没有公共元素的三个集合、、,即,,,,其中,,,且满足,,、、、,则称集合为“完美集合”.
    (1)若集合,,判断集合和集合是否为“完美集合”?并说明理由;
    (2)已知集合为“完美集合”,求正整数的值;
    (3)设集合,证明:集合为“完美集合”的一个必要条件是或.
    12.(2021·北京门头沟·统考二模)已知定义在R上的函数的图象是一条连续不断的曲线,且在任意区间上不是常值函数.设,其中分点将区间分成个小区间,记称为关于区间的n阶划分的“落差总和”.当取得最大值且n取得最小值时,称存在“最佳划分”.
    (1)已知,求的最大值(不必论证);
    (2)已知,求证:在区间上存在“最佳划分”的充要条件是在区间上单调递增.

    相关试卷

    专题01 利用导函数研究函数的切线问题(典型题型归类训练)-2024年高考数学复习解答题解题思路训练:

    这是一份专题01 利用导函数研究函数的切线问题(典型题型归类训练)-2024年高考数学复习解答题解题思路训练,文件包含专题01利用导函数研究函数的切线问题典型题型归类训练原卷版docx、专题01利用导函数研究函数的切线问题典型题型归类训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    专题01 二项分布 (典型题型归类训练)-2024年高考数学复习解答题解题思路训练:

    这是一份专题01 二项分布 (典型题型归类训练)-2024年高考数学复习解答题解题思路训练,文件包含专题01二项分布典型题型归类训练原卷版docx、专题01二项分布典型题型归类训练解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    新定义新情景压轴解答题-2024年高考数学压轴题专项训练:

    这是一份新定义新情景压轴解答题-2024年高考数学压轴题专项训练,文件包含压轴题型新定义新情景压轴解答题解析版pdf、压轴题型新定义新情景压轴解答题学生版pdf等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题01 19题新结构定义题(集合部分)(典型题型归类训练)-2024年高考数学复习解答题解题思路训练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map