广东省新高考数学模拟卷04-解答题17-22题精编真题重组卷(新高考通用)
展开2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
【省市模拟•新题速递•好题精编•考点精做】广东省新高考数学模拟卷(四)解答题17-22题精编真题重组卷
(新高考通用)
1.(2023·广东·统考一模)在中,角的对边分别为,已知.
(1)求角的大小;
(2)求的取值范围.
2.(2023·广东·统考一模)已知各项都是正数的数列,前项和满足.
(1)求数列的通项公式.
(2)记是数列的前项和,是数列的前项和.当时,试比较与的大小.
3.(2023·广东·统考一模)如图所示的在多面体中,,平面平面,平面平面,点分别是中点.
(1)证明:平面平面;
(2)若,求平面和平面夹角的余弦值.
4.(2023·广东·统考一模)某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放10个大小相同的小球,其中5个为红色,5个为白色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.
(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.
(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.
(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.
5.(2023·广东·统考一模)已知点,点和点为椭圆上不同的三个点.当点,点B和点C为椭圆的顶点时,△ABC恰好是边长为2的等边三角形.
(1)求椭圆标准方程;
(2)若为原点,且满足,求的面积.
6.(2023·广东·统考一模)已知函数.
(1)求的极值;
(2)当时,,求实数的取值范围.
7.(2023·广东湛江·统考一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知.
(1)求A;
(2)若△ABC的面积为,,求a.
8.(2023·广东湛江·统考一模)已知,为数列的前n项和,.
(1)证明:数列为等比数列;
(2)设数列的前n项和为,证明:.
9.(2023·广东湛江·统考一模)如图,在四棱锥中,是边长为2的等边三角形,底面为平行四边形,且,,.
(1)证明:点在平面的正投影在直线上;
(2)求平面与平面夹角的余弦值.
10.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:
(1)由频率分布直方图估计抽检样本关键指标的平均数和方差.(用每组的中点代表该组的均值)
(2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值.
(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:
利用和判断该生产周期是否需停止生产并检查设备.
(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.
参考公式:直方图的方差,其中为各区间的中点,为各组的频率.
参考数据:若随机变量X服从正态分布,则,,,,.
11.(2023·广东湛江·统考一模)已知分别为椭圆的左、右焦点,椭圆E的离心率为,过且不与坐标轴垂直的直线与椭圆E交于A,B两点,的周长为8.
(1)求椭圆E的标准方程;
(2)过且与垂直的直线与椭圆E交于C,D两点,求四边形ACBD面积的最小值.
12.(2023·广东湛江·统考一模)已知函数.
(1)证明:函数只有一个零点;
(2)在区间上函数恒成立,求a的取值范围.
13.(2023·广东广州·统考一模)已知数列的前项和为,且
(1)求,并证明数列是等差数列:
(2)若,求正整数的所有取值.
14.(2023·广东广州·统考一模)记的内角、、的对边分别为、、.已知.
(1)证明:;
(2)若,,求的面积.
15.(2023·广东广州·统考一模)如图,在四棱锥P-ABCD中,△PAD是以AD为斜边的等腰直角三角形,
(1)求证:;
(2)求平面PAB与平面ABCD交角的正弦值.
16.(2023·广东广州·统考一模)为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.
(1)求甲前3次答题得分之和为40分的概率;
(2)记甲第i次答题所得分数的数学期望为.
①写出与满足的等量关系式(直接写出结果,不必证明):
②若,求i的最小值.
17.(2023·广东广州·统考一模)已知椭圆的离心率为,以C的短轴为直径的圆与直线相切.
(1)求C的方程;
(2)直线:与C相交于A,B两点,过C上的点P作x轴的平行线交线段AB于点Q,直线OP的斜率为(O为坐标原点),△APQ的面积为.的面积为,若,判断是否为定值?并说明理由.
18.(2023·广东广州·统考一模)已知,函数.
(1)若,证明:当时,:
(2)若函数存在极小值点,证明:
19.(2023·广东江门·统考一模)已知数列()满足,,且.
(1)求数列是通项公式;
(2)求数列的前n项和.
20.(2023·广东江门·统考一模)在锐角中,角的对边分别为,且,,依次组成等差数列.
(1)求的值;
(2)若,求的取值范围.
21.(2023·广东江门·统考一模)某高科技公司对其产品研发年投资额x(单位:百万元)与其年销售量y(单位:千件)的数据进行统计,整理后得到如下统计表和散点图.
(1)该公司科研团队通过分析散点图的特征后,计划分别用①和②两种方案作为年销售量y关于年投资额x的回归分析模型,请根据统计表的数据,确定方案①和②的经验回归方程;(注:系数b,a,d,c按四舍五入保留一位小数)
(2)根据下表中数据,用相关指数(不必计算,只比较大小)比较两种模型的拟合效果哪个更好,并选择拟合精度更高、更可靠的模型,预测当研发年投资额为8百万元时,产品的年销售量是多少?
参考公式及数据:,,
,
,.
22.(2023·广东江门·统考一模)如图,在四棱锥中,底面是菱形,是的中点,点在上,且平面.
(1)求的值;
(2)若平面,,,,求直线与平面所成角的正弦值.
23.(2023·广东江门·统考一模)已知M是平面直角坐标系内的一个动点,直线与直线垂直,A为垂足且位于第一象限,直线与直线垂直,B为垂足且位于第四象限,四边形(O为原点)的面积为8,动点M的轨迹为C.
(1)求轨迹C的方程;
(2)已知是轨迹C上一点,直线l交轨迹C于P,Q两点,直线,的斜率之和为1,,求的面积.
24.(2023·广东江门·统考一模)已知函数,其中.
(1)若的图象在处的切线过点,求a的值;
(2)证明:,,其中e的值约为2.718,它是自然对数的底数;
(3)当时,求证:有3个零点,且3个零点之积为定值.
25.(2023·广东汕头·统考一模)如图,在中,D是边上的一点,,.
(1)证明:;
(2)若D为靠近B的三等分点,,,,为纯角,求.
26.(2023·广东汕头·统考一模)2023年1月14日,翘首以盼的汕头镇邦美食街开街啦!近年来,汕头多措并举,提升汕头美食品牌,推动潮汕菜产业做大做强,镇邦美食街的建成开街,是汕头美食产业的又一里程碑,同时“舌尖汕头”——汕头美食地图同步上线,以微信小程序的形式面向游客,并通过意见反馈功能收集游客满意度调查问卷.
(1)现将游客按年龄段分为老中青三个群体,通过问卷数据分析显示,老年群体中有的游客给予好评,中年群体有的游客给予好评,青年群体中有的游客给予好评,且老中青三个群体游客人数之比为,从这三个群体中随机抽取1名游客,求该游客给予好评的概率.
(2)镇邦美食街共有多家餐饮单位进驻,为维护市场价格秩序,营造公平竞争良好环境,汕头市监管部门到镇邦美食街举办餐饮明码标价现场指导会,现针对明码标价指导会前、会后游客满意度进行问卷回访调查,统计了名游客的数据,列出如下列联表:
请根据小概率值的独立性检验判断游客对汕头镇邦美食街餐饮价格满意度与监管部门举办明码标价现场指导会是否有关联.
▲参考公式:,
27.(2023·广东汕头·统考一模)已知为正项数列的前n项的乘积,且,.
(1)求数列的通项公式;
(2)设,数列的前n项和为,求(表示不超过x的最大整数).
28.(2023·广东汕头·统考一模)如图,在多面体中,四边形与均为直角梯形,,,平面,,.
(1)已知点为上一点,且,求证:与平面不平行;
(2)已知直线与平面所成角的正弦值为,求该多面体的体积.
29.(2023·广东汕头·统考一模)如图,已知为抛物线内一定点,过E作斜率分别为,的两条直线,与抛物线交于,且分别是线段的中点.
(1)若且时,求面积的最小值;
(2)若,证明:直线过定点.
30.(2023·广东汕头·统考一模)已知函数.
(1)若函数在处取得极值,求的值及函数的单调区间;
(2)若函数有两个零点,求的取值范围.
0.8
1.2
0.95
1.01
1.23
1.12
1.33
0.97
1.21
0.83
x
1
2
3
4
5
6
y
0.5
1
1.5
3
6
12
-0.7
0
0.4
1.1
1.8
2.5
经验回归方程
残差平方和
18.29
0.65
对镇邦美食街餐饮价格是否满意
明码标价指导会前
明码标价指导会后
合计
满意
28
57
85
不满意
12
3
15
合计
40
60
100
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
广东省新高考数学模拟卷03-填空题13-16题精编真题重组卷(新高考通用): 这是一份广东省新高考数学模拟卷03-填空题13-16题精编真题重组卷(新高考通用),文件包含广东省新高考数学模拟卷03-填空题13-16题精编真题重组卷新高考通用原卷版docx、广东省新高考数学模拟卷03-填空题13-16题精编真题重组卷新高考通用解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【省市模拟•新题速递•好题精编•考点精做】新高考数学模拟卷12 解答题精编真题重组卷(湖北省新高考通用): 这是一份【省市模拟•新题速递•好题精编•考点精做】新高考数学模拟卷12 解答题精编真题重组卷(湖北省新高考通用),文件包含省市模拟•新题速递•好题精编•考点精做湖北省新高考模拟卷12解答题精编真题重组卷新高考通用原卷版docx、省市模拟•新题速递•好题精编•考点精做湖北省新高考模拟卷12解答题精编真题重组卷新高考通用解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
【省市模拟•新题速递•好题精编•考点精做】新高考数学模拟卷11 填空题精编真题重组卷(湖北省新高考通用): 这是一份【省市模拟•新题速递•好题精编•考点精做】新高考数学模拟卷11 填空题精编真题重组卷(湖北省新高考通用),文件包含省市模拟•新题速递•好题精编•考点精做湖北省新高考模拟卷11填空题精编真题重组卷新高考通用原卷版docx、省市模拟•新题速递•好题精编•考点精做湖北省新高考模拟卷11填空题精编真题重组卷新高考通用解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。