|试卷下载
搜索
    上传资料 赚现金
    2024年高考押题预测卷—数学(全国卷理科01)(全解全析)
    立即下载
    加入资料篮
    2024年高考押题预测卷—数学(全国卷理科01)(全解全析)01
    2024年高考押题预测卷—数学(全国卷理科01)(全解全析)02
    2024年高考押题预测卷—数学(全国卷理科01)(全解全析)03
    还剩11页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考押题预测卷—数学(全国卷理科01)(全解全析)

    展开
    这是一份2024年高考押题预测卷—数学(全国卷理科01)(全解全析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    第一部分(选择题 共60分)
    一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.【答案】C
    【解析】由,故,故,
    即.
    故选:C.
    2.【答案】B
    【解析】,
    故选:B.
    3.【答案】B
    【解析】由题意可得,,
    所以
    因为,,,所以,
    所以.
    故选:B
    4.【答案】D
    【解析】依题,解得,则二项式的所有项系数之和为.
    故选:D.
    5.【答案】B
    【解析】由题意可知,,,
    则,解得,或(舍),
    所以.
    故选:B
    6.【答案】B
    【解析】由题意,设点到平面的距离为,


    由,得,解得,
    棱长为6的正方体的正方体的内切球的半径为,
    棱长为6的正方体体对角线的长度为,
    因为,
    所以所求球形体积最大时即为棱长为6的正方体的正方体的内切球,
    则该球形饰品的体积的最大值为.
    故选:B.
    7.【答案】B
    【解析】,所以,

    又因为,
    所以,即.
    故选:B.
    8.【答案】D
    【解析】由题意知,
    所以,两边取以10为底的对数,得,
    所以,
    故选:D.
    9.【答案】A
    【解析】由题意得,抛物线的准线方程为,
    设,则,,
    故.
    令,则,由,得,
    所以,
    令,则,所以,
    故当,即时,取得最小值.
    故选:A.
    10.【答案】D
    【解析】法一:因为是等比数列,设其公比为,由题意得,
    所以数列是首项为,公比为的等比数列.
    则,.
    设数列的前项和为,
    则.
    法二:设数列的前项和为,则,

    ,即.
    故选:D.
    11.【答案】C
    【解析】解法一:由题可得,矩形的宽为,则长为,
    双曲线以矩形长边中点为焦点,过顶点,如图所示,
    则,代入双曲线的方程,得,即.
    又因为,所以,即,
    等式两边同时除以得.
    设,则,即,
    解得或(不合题意,舍去),即,
    所以.
    故选:C.
    解法二:连接,由题意知,则,,,
    则由双曲线的定义知,即,,
    所以双曲线的离心率.
    故选:C.
    12.【答案】A
    【解析】由可得,要使恰有一个零点,只需函数的图象与直线相切.
    设切点坐标为.由,可得,则切线方程为,即,
    故需使.
    由可得,解得.
    故选:A
    第二部分(非选择题 共90分)
    二、填空题:本大题共4小题,每小题5分,共20分
    13.【答案】
    【解析】根据特殊元素“甲同学”分类讨论,
    当单位只有甲时,其余四人分配到,不同分配方案有种;
    当单位不只有甲时,其余四人分配到,不同分配方案有种;
    合计有种不同分配方案,
    故答案为:.
    14.【答案】
    【解析】由知是奇函数,,
    设,则,
    在上单调递增,由得,
    即,,得的取值范围是.
    故答案为:
    15.【答案】
    【解析】依题意,点的轨迹为直线上,显然,要最大,当且仅当最大,
    在中,,而正弦函数在上单调递增,
    则只需最大,即圆心到点的距离最小,因此,又圆心,
    此时直线的方程为,由解得点,
    于是圆心关于点对称的点的坐标为,所以圆关于点对称的圆的方程为.
    故答案为:
    16.【答案】/
    【解析】取的中点E,的中点F,连接EF,,,
    则易得,,
    因为平面,平面,故平面,
    同理:平面AMN,又平面,
    所以平面平面,又平面AMN,
    所以平面,即点在平面与平面的交线EF上,
    当时,取最小值.
    易知,故当取最小值时,P为EF的中点,
    此时的面积,
    则.
    故答案为:.
    三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
    (一)必考题:共60分.
    17.(12分)
    【解析】(1)
    由余弦定理可得,
    化简为,解得或,
    当时,因为,与为锐角三角形不符合,故.
    (2)作垂直于,设,
    则,当,四边形面积最大,最大面积为.
    18.(12分)
    【解析】(1)当对接码中一个数字出现3次,另外两个数字各出现1次时,
    种数为:,
    当对接的中两个数字各出现2次,另外一个数字出现1次时,
    种数为:,
    所有满足条件的对接码的个数为150.
    (2)随机变量的取值为1,2,3,其分布为:
    ,,

    故的分布列为:
    故.
    19.(12分)
    【解析】(1)存在,;
    理由如下:由,,,平面,
    所以平面,又平面,
    故,又,平面,故平面,
    又平面,故平面平面,又平面平面,
    平面,作,则平面,又平面,
    故平面平面,由题意,不妨设,
    则中,由等面积得,所以,
    则,所以.
    (2)以为原点,,,分别为,,轴建立空间直角坐标系,
    由(1),, , ,
    ,,
    设平面的法向量为,
    由,取,
    易知平面PDE的法向量为,
    设平面和平面的夹角为,故.
    20.(12分)
    【解析】(1)设,由,得焦点,则.
    由,得,解得,代入抛物线方程,得,即,
    所以,即,所以,
    所以椭圆的方程为.
    (2)设直线的方程为,,,,.
    联立消去整理得,
    所以.
    因为,所以,又,所以,
    所以,,
    即,
    即,化简得.
    因为,所以,此时,
    所以

    令,则,
    当且仅当,即时,等号成立.
    因为,所以,
    当且仅当时,等号成立,
    故的最大值为.
    21.(12分)
    【解析】(1)由已知函数的定义域为,又
    当时,,函数在上是增函数;
    当时,解得或(舍去),
    所以当时,函数在上是增函数;
    当时,函数在上是减函数;
    综上所述:当时,函数在上单调递增;
    当时,函数在上单调递增,在上单调递减.
    (2)由已知,即,
    可得,
    函数有两个极值点,即在上有两个不等实根,
    令,只需,故,
    又,,
    所以

    要证,
    即证,,
    只需证,,
    令,
    则,
    令,则恒成立,
    所以在上单调递减,又,
    由零点存在性定理得,使得,即,
    所以时,单调递增,
    时,单调递减,
    则,
    令,,则,
    所以在上单调递增,
    所以,
    所以,即得证.
    (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.
    选修4-4:坐标系与参数方程
    22.(10分)
    【解析】(1)将代入直线与曲线的极坐标方程中,
    得直线的直角坐标方程为,
    曲线的直角坐标方程为,整理得.
    易知曲线的参数方程为(为参数).
    (2)设点的坐标为,
    则,
    所以当时,取得最小值,
    当时,取得最大值,
    故的取值范围为.
    选修4-5:不等式选讲
    23.(10分)
    【解析】(1)由,
    当且仅当时取等号;
    因为的最小值为,所以,又,所以.
    所以即,
    即或或,
    解得,故不等式的解集为.
    (2)由,
    作出函数的图象及直线,如图所示,其中.

    因为方程有实数根,
    所以的图象与直线有公共点.
    因为过定点,所以当直线经过点时,斜率,
    即时,直线与的图像有公共点,也就是方程有实数根;
    由图像知,直线的斜率小于直线的斜率时,得,
    此时直线与的图像也有公共点,也就是方程有实数根.
    即实数的取值范围是.1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    C
    B
    B
    D
    B
    B
    B
    D
    A
    D
    C
    A
    1
    2
    3
    相关试卷

    2024年高考押题预测卷—数学(北京卷01)(全解全析): 这是一份2024年高考押题预测卷—数学(北京卷01)(全解全析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年高考押题预测卷01(乙卷理科)(全解全析): 这是一份2023年高考押题预测卷01(乙卷理科)(全解全析),共21页。

    2023年高考押题预测卷01(乙卷理科)(全解全析)数学: 这是一份2023年高考押题预测卷01(乙卷理科)(全解全析)数学,共22页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高考押题预测卷—数学(全国卷理科01)(全解全析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map