专题07 分式方程-备战2024年中考数学真题题源解密(全国通用)
展开目录一览
1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型;
2.能解可化为一元一次方程的分式方程;
3.能根据具体问题的实际意义,检验方程的解是否合理.
本考点内容以考查分式方程解法、分式方程含参问题、分式方程的应用题为主,既有单独考查,也有和一次函数、二次函数结合考察,年年考查,分值为10分左右,预计2024年各地中考还将继续考查分式方程解法、分式方程含参问题(较难)、分式方程的应用题,为避免丢分,学生应扎实掌握。
►考向一 分式方程的解
1.(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )
A.m≤2B.m≥2C.m≤2且m≠﹣2D.m<2且m≠﹣2
2.(2023•聊城)若关于x的分式方程+1=的解为非负数,则m的取值范围是( )
A.m≤1且m≠﹣1B.m≥﹣1且m≠1C.m<1且m≠﹣1D.m>﹣1且m≠1
3.(2023•日照)若关于x的方程﹣2=的解为正数,则m的取值范围是( )
A.m>﹣B.m<
C.m>﹣且m≠0D.m<且m≠
►考向二 解分式方程
4.(2023•大连)解方程去分母,两边同乘(x﹣1)后的式子为( )
A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3x
C.x﹣1+3=﹣3xD.1+3(x﹣1)=3x
5.(2023•淮安)方程=1的解是
6.(2023•陕西)解方程:.
►考向三 分式方程的增根
7.(2021•宜宾)若关于x的分式方程有增根,则m的值是( )
A.1B.﹣1C.2D.﹣2
8.(2021•无锡)分式方程有增根,则m的值是( )
A.3B.﹣3C.6D.﹣6
(2023•巴中)关于x的分式方程+=3有增根,则m= .
►考向四 由实际问题抽象出分式方程
10.(2023•青海)为了缅怀革命先烈,传承红色精神,青海省某学校八年级师生在清明节期间前往距离学校15km的烈士陵园扫墓.一部分师生骑自行车先走,过了30min后,其余师生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车师生速度的2倍,设骑车师生的速度为x km/h.根据题意,下列方程正确的是( )
A.B.
C.D.
11.(2023•张家界)《四元玉鉴》是我国古代的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210文购买椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1)=B.3(x﹣1)=6210
C.3(x﹣1)=D.=3x
12.(2023•淄博)为贯彻落实习近平总书记关于黄河流域生态保护和高质量发展的重要讲话精神,某学校组织初一、初二两个年级学生到黄河岸边开展植树造林活动.已知初一植树900棵与初二植树1200棵所用的时间相同,两个年级平均每小时共植树350棵.求初一年级平均每小时植树多少棵?设初一年级平均每小时植树x棵,则下面所列方程中正确的是( )
A.B.
C.D.
►考向五 分式方程的应用
13.(2023•宜昌)某校学生去距离学校12km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,汽车的速度是( )
A.0.2km/minB.0.3km/minC.0.4km/minD.0.6km/min
14.(2023•通辽)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
15.(2023•常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
1.(2023•齐齐哈尔)如果关于x的分式方程的解是负数,那么实数m的取值范围是( )
A.m<﹣1B.m>﹣1且m≠0
C.m>﹣1D.m<﹣1且m≠﹣2
2.(2023•淄博)已知x=1是方程的解,那么实数m的值为( )
A.﹣2B.2C.﹣4D.4
3.(2023•兰州)方程的解是( )
A.x=1B.x=﹣1C.x=5D.x=﹣5
4.(2021•贺州)若关于x的分式方程有增根,则m的值为( )
A.2B.3C.4D.5
5.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值为( )
A.m=2B.m=1C.m=3D.m=﹣3
6.(2023•云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是( )
A.B.
C.D.
7.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的
是( )
A.+=1B.+(+)=1
C.(1+)+=1D.+(+)=1
8.(2023•重庆)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 .
9.(2023•重庆)若关于x的一元一次不等式组至少有2个整数解,且关于y的分式方程+=2有非负整数解,则所有满足条件的整数a的值之和是 .
10.(2023•眉山)关于x的方程的解为非负数,则m的取值范围是 .
11.(2023•赤峰)方程+=1的解为 .
12.(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是 .
13.(2020•潍坊)若关于x的分式方程+1有增根,则m= .
14.(2020•巴中)若关于x的分式方程有增根,则m= .
15.(2023•绵阳)随着国家提倡节能减排,新能源车将成为时代“宠儿”.端午节,君君一家驾乘新购买的新能源车,去相距180km的古镇旅行,原计划以速度v km/h匀速前行,因急事以计划速度的1.2倍匀速行驶,结果就比原计划提前了0.5h到达,则原计划的速度v为 km/h.
16.(2023•湖北)(1)计算:(12x4+6x2)÷3x﹣(﹣2x)2(x+1);
解分式方程:﹣=0.
17.(2023•浙江)小丁和小迪分别解方程﹣=1过程如下:
你认为小丁和小迪的解法是否正确?若正确,请在框内打“√”;若错误,请在框内打“×”,并写出你的解答过程.
18.(2023•凉山州)解方程:=.
19.(2023•南通)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:
信息一
信息二
(1)求x的值;
(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?
20.(2023•威海)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,一部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.
21.(2023•黑龙江)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.
(1)求A款文化衫和B款文化衫每件各多少元?
(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?
(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.
22.(2023•丹东)“畅通交通,扮靓城市”,某市在道路提升改造中,将一座长度为36米的桥梁进行重新改造.为了尽快通车,某施工队在实际施工时,每天工作效率比原计划提高了50%,结果提前2天成功地完成了大桥的改造任务,那么该施工队原计划每天改造多少米?
23.(2023•盐城)某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).
(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.
(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m本硬面笔记本(m为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.
24.(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
(1)求A,B饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,
①求x的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
知识目标(新课程标准提炼)
中考解密(分析中考考察方向,厘清命题趋势,精准把握重难点)
考点回归(梳理基础考点,清晰明了,便于识记)
重点考向(以真题为例,探究中考命题方向)
►考向一 分式方程的解
►考向二 解分式方程
►考向三 分式方程的增根
►考向四 由实际问题抽象出分式方程
►考向五 分式方程的应用
最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)
分式方程的概念
分母中含有未知数的方程叫做分式方程.
分式方程的解法
1.解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.
2.解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.
增根
在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.
分式方程的应用
主要涉及工程问题,有工作量问题、行程问题等.
每个问题中涉及到三个量的关系,
如:工作时间=,时间=等.
列分式方程解应用题的一般步骤
①设未知数;
②找等量关系;
③列分式方程;
④解分式方程;
⑤检验(一验分式方程,二验实际问题);
⑥答.
解题技巧/易错易混/特别提醒
注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.
解题技巧/易错易混/特别提醒
解分式方程过程中,易错点有:
①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;
②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.
解题技巧/易错易混/特别提醒
增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,
当然原分式方程就一定无解.
工程队
每天施工面积(单位:m2)
每天施工费用(单位:元)
甲
x+300
3600
乙
x
2200
甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.
2024年中考数学模拟检测卷02(全国通用)-备战2024年中考数学真题题源解密(全国通用): 这是一份2024年中考数学模拟检测卷02(全国通用)-备战2024年中考数学真题题源解密(全国通用),文件包含2024年中考数学模拟检测卷02全国通用原卷docx、2024年中考数学模拟检测卷02全国通用解析docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
2024年中考数学模拟检测卷01(全国通用)-备战2024年中考数学真题题源解密(全国通用): 这是一份2024年中考数学模拟检测卷01(全国通用)-备战2024年中考数学真题题源解密(全国通用),文件包含2024年中考数学模拟检测卷01全国通用原卷docx、2024年中考数学模拟检测卷01全国通用解析docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
突破06 函数与几何图形动态探究题-备战2024年中考数学真题题源解密(全国通用): 这是一份突破06 函数与几何图形动态探究题-备战2024年中考数学真题题源解密(全国通用),文件包含突破06函数与几何图形动态探究题原卷版docx、突破06函数与几何图形动态探究题教师版docx等2份试卷配套教学资源,其中试卷共146页, 欢迎下载使用。