上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版+解析版)
展开本试卷满分150分,考试时间120分钟.
2024.4
一、填空题(本大题共12小题,满分54分)第1小题至第6小题每个空格填对得4分,第7小题至第12小题每个空格填对得5分,考生应在答题纸的相应编号后填写答案,否则一律得零分.
1. 中国国旗上所有颜色组成的集合为________.
2. 已知是虚数单位,复数是纯虚数,则实数的值为________.
3. 函数的定义域为________.
4. 若单位向量、满足,则________.
5. 某地区高三年级2000名学生参加了地区教学质量调研测试,已知数学测试成绩服从正态分布(试卷满分150分),统计结果显示,有320名学生的数学成绩低于80分,则数学分数属于闭区间的学生人数约为_______.
6. 已知物体的位移(单位:m)与时间(单位:s)满足函数关系,则在时间段内,物体的瞬时速度为的时刻_______(单位:s).
7. 已知等比数列前项和为,则的值为________.
8. 在下列关于实数的四个不等式中,恒成立的是_______.(请填入全部正确的序号)
①;②;③;④.
9. 正四棱锥底面边长为2,高为3,则点到不经过点的侧面的距离为_______.
10. 某工厂生产的产品以100个为一批.在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的.假定每一批产品中的次品最多不超过2个,并且其中恰有(0,1,2)个次品的概率如下:
则各批产品通过检查的概率为________.(精确到0.01)
11. 已知实数,记.若函数在区间上最小值为,则的值为________.
12. 我们称如图的曲线为“爱心线”,其上的任意一点都满足方程,现将一边在x轴上,另外两个顶点在爱心线上的矩形称为心吧.若已知点“爱心线”上任意一点的最小距离为,则用表示心吧面积的最大值为_______.
二、选择题(本大题共4小题,满分18分)第13题、14题各4分,第15题、16题各5分.每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑.
13. 函数的最小正周期为( )
A. B. C. D.
14. 设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是( )
A. 若,,则 ;B. 若,,,则 ;
C. 若,,则 ;D. 若,,,,则.
15. 设,则双曲线的离心率的取值范围是( )
A. B. C. D.
16. 如果一个非空集合上定义了一个运算,满足如下性质,则称关于运算构成一个群.
(1) 封闭性,即对于任意的,有;
(2) 结合律,即对于任意的,有;
(3) 对于任意的,方程与在中都有解.
例如,整数集关于整数的加法()构成群,因为任意两个整数的和还是整数,且满足加法结合律,对于任意的,方程与都有整数解;而实数集关于实数的乘法()不构成群,因为方程没有实数解.
以下关于“群”真命题有( )
①自然数集关于自然数加法()构成群;
②有理数集关于有理数的乘法()构成群;
③平面向量集关于向量的数量积()构成群;
④复数集关于复数的加法()构成群.
A. 0个;B. 1个;C. 2个;D. 3个.
三、解答题(本大题共5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
17. 在中,角、、的对边分别为、、,已知,,.
(1)求角的大小;
(2)求的值.
18. 某高中随机抽取名学生,测得他们的身高(单位:cm),按照区间,,,,分组,得到样本身高的频率分布直方图(如下图所示).
(1)求身高不低于170cm的学生人数;
(2)将身高在,,区间内的学生依次记为,,三个组,用分层抽样的方法从三个组中抽取6人.
① 求从这三个组分别抽取的学生人数;
② 若要从6名学生中抽取2人,求组中至少有1人被抽中的概率.
19. 如图1所示,是水平放置的矩形,,.如图2所示,将沿矩形的对角线向上翻折,使得平面平面.
(1)求四面体的体积;
(2)试判断与证明以下两个问题:
① 在平面上是否存在经过点的直线,使得?
② 在平面上是否存在经过点的直线,使得?
20. 江南某公园内正在建造一座跨水拱桥.如平面图所示,现已经在地平面以上造好了一个外沿直径为20米的半圆形拱桥洞,地平面与拱桥洞外沿交于点与点. 现在准备以地平面上的点与点为起点建造上、下桥坡道,要求:①;②在拱桥洞左侧建造平面图为直线的坡道,坡度为 (坡度为坡面的垂直高度和水平方向的距离的比);③在拱桥洞右侧建造平面图为圆弧的坡道;④在过桥的路面上骑车不颠簸.
(1)请你设计一条过桥道路,画出大致的平面图,并用数学符号语言刻画与表达出来;
(2)并按你方案计算过桥道路的总长度;(精确到0.1米)
(3)若整个过桥坡道的路面宽为10米,且铺设坡道全部使用混凝土.请设计出所铺设路面的相关几何体,提出一个实际问题,写出解决该问题的方案,并说明理由 (如果需要,可通过假设的运算结果列式说明,不必计算).
21. 已知,记(且).
(1)当(是自然对数的底)时,试讨论函数的单调性和最值;
(2)试讨论函数的奇偶性;
(3)拓展与探究:
① 当在什么范围取值时,函数的图象在轴上存在对称中心?请说明理由;
②请提出函数的一个新性质,并用数学符号语言表达出来.(不必证明)
一批产品中有次品的个数
0
1
2
概率
0.3
0.5
0.2
上海市青浦区2024届高三下学期4月学业质量调研数学试卷(原卷版+解析版): 这是一份上海市青浦区2024届高三下学期4月学业质量调研数学试卷(原卷版+解析版),文件包含上海市青浦区2024届高三下学期4月学业质量调研数学试卷原卷版docx、上海市青浦区2024届高三下学期4月学业质量调研数学试卷解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
上海市静安区2024届高三上学期期末教学质量调研数学试题: 这是一份上海市静安区2024届高三上学期期末教学质量调研数学试题,共18页。试卷主要包含了选择题第13题等内容,欢迎下载使用。
江苏省无锡市2023-2024学年高三上学期期中教学质量调研测试数学试卷(原卷版): 这是一份江苏省无锡市2023-2024学年高三上学期期中教学质量调研测试数学试卷(原卷版),共5页。