综合解析人教版数学八年级上册期中定向训练试题 B卷(含答案及解析)
展开
这是一份综合解析人教版数学八年级上册期中定向训练试题 B卷(含答案及解析),共23页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,已知图中的两个三角形全等,则∠α的度数是( )
A.72°B.60°C.58°D.50°
2、如果一个多边形内角和是外角和的4倍,那么这个多边形有( )条对角线.
A.20B.27C.35D.44
3、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是( )
A.1B.2C.4D.8
4、如图,已知在四边形中,,平分,,,,则四边形的面积是( )
A.24B.30C.36D.42
5、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有( )
A.①②③B.①②④C.①③④D.①②③④
二、多选题(5小题,每小题4分,共计20分)
1、如图,已知,下列结论正确的有( )
A.B.C.D.△≌△
2、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )
A.三角形有且只有一条中线
B.三角形的高一定在三角形内部
C.三角形的两边之差大于第三边
D.三角形按边分类可分为等腰三角形和不等边三角形
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12B.16C.19D.25
4、下列不是真命题的是( )
A.如果 a>b,a>c,那么 b=c
B.相等的角是对顶角
C.一个角的补角大于这个角
D.一个三角形中至少有两个锐角
5、如图,若判断,则需要添加的条件是( )
A.,B.,
C.,D.,
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H.若,,则____________.
2、如图,中,,三角形的外角和的平分线交于点E,则的度数为________.
3、如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.在图2中,的度数为__________.
4、如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是______.
5、在ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明ABD≌ACD,这个条件可以是________(写出一个即可)
四、解答题(5小题,每小题8分,共计40分)
1、如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.
3、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
4、已知://.求证://.
5、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.
【详解】
解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,
又∵两个三角形全等,
∴∠α的度数是50°.
故选:D.
【考点】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.
2、C
【解析】
【分析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成.
【详解】
解:设这个多边形是n边形,
根据题意得,(n-2)•180°=4×360°,
解得n=10.
10×(10-3)÷2=35(条).
故选:C.
【考点】
本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.
3、C
【解析】
【分析】
根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.
【详解】
根据三角形的三边关系得,即,则选项中4符合题意,
故选:C.
【考点】
本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键.
4、B
【解析】
【分析】
过D作DE⊥AB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.
【详解】
如图,过D作DE⊥AB交BA的延长线于E,
∵BD平分∠ABC,∠BCD=90°,
∴DE=CD=4,
∴四边形的面积
故选B.
【考点】
本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.
5、D
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.
【详解】
解:∵∠BAF=∠CAG=90°,
∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,
又∵AB=AF=AC=AG,
∴△CAF≌△GAB(SAS),
∴BG=CF,故①正确;
∵△FAC≌△BAG,
∴∠FCA=∠BGA,
又∵BC与AG所交的对顶角相等,
∴BG与FC所交角等于∠GAC,即等于90°,
∴BG⊥CF,故②正确;
过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,
∵∠FMA=∠FAB=∠ADB=90°,
∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,
∴∠BAD=∠AFM,
又∵AF=AB,
∴△AFM≌△BAD(AAS),
∴FM=AD,∠FAM=∠ABD,
故③正确,
同理△ANG≌△CDA,
∴NG=AD,
∴FM=NG,
∵FM⊥AE,NG⊥AE,
∴∠FME=∠ENG=90°,
∵∠AEF=∠NEG,
∴△FME≌△GNE(AAS).
∴EF=EG.
故④正确.
故选:D.
【考点】
本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.
二、多选题
1、ACD
【解析】
【分析】
只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:在△ABE和△ACF中,
,
∴△ABE≌△ACF(AAS),
∴∠BAE=∠CAF,BE=CF,AB=AC,
∴∠BAE−∠BAC=∠CAF−∠BAC,
即∠1=∠2,
∴,故C正确;
在△ACN和△ABM中,
,
∴△ACN≌△ABM(ASA),故D正确;
∴CN=BM.
∵CF=BE,
∴EM=FN,故A正确,
CD与DN的大小无法确定,故B错误.
故选:ACD.
【考点】
本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.
2、ABC
【解析】
【分析】
三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.
【详解】
解:A.三角形有3条中线,选项A的说法是错误的;
B.三角形的高不一定在三角形内部,选项B的说法是错误的;
C.三角形的两边之差小于第三边,选项C的说法是错误的;
D.三角形按边分类可分为等腰三角形和不等边三角形是正确的.
故答案为:ABC.
【考点】
本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.
3、BC
【解析】
【分析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
解:∵三角形的两边长分别为5和7,
∴7-5=2
相关试卷
这是一份综合解析-人教版数学八年级上册期中定向训练试题 B卷(解析卷),共21页。试卷主要包含了不一定在三角形内部的线段是等内容,欢迎下载使用。
这是一份综合解析人教版数学八年级上册期中定向训练试题 B卷(解析版),共24页。试卷主要包含了在下列条件中,若△ABC中,,则一定是等内容,欢迎下载使用。
这是一份综合解析人教版数学八年级上册期中定向训练试题 B卷(含详解),共26页。