2024年山东省济南市九年级学业水平考试数学模拟预测试题(原卷版+解析版)
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.
5.考试结束后,将本试卷和答题卡一并交回.
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 某班期末考试数学的平均成绩是83分,小亮得了90分,记作分,小英的成绩记作分,表示得了( )分.
A. 86B. 83C. 87D. 80
2. 下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3. 华为Mate60Pr手机是全球首款支持卫星通话的智能手机.预计至2024年底,这款手机的出货量将达到70000000台.将70000000用科学记数法表示应为( )
A. B. C. D.
4. 已知直线,将一块含角直角三角板ABC按如图方式放置,若,则的度数是( )
A. B. C. D.
5. 在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )
A. 9.7,9.9B. 9.7,9.8C. 9.8,9.7D. 9.8,9.9
6. 如图为北京冬奥会“雪飞天”滑雪大跳台赛道.若点与点的水平距离米,水平赛道米,赛道的坡角均为,则点的高为(
A. 米B. 米C. 米D. 米
7. 若点,,都在反比例函数的图象上,则,,的大小关系是( )
A. B. C. D.
8. 如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为( )
A. B. 3C. 4D. 5
9. 如图,正方形ABCD对角线AC,BD相交于点O,点F是CD上一点,交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①;②;③;④若,则;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是( )
A. ①②④⑤B. ①②③⑤C. ①②③④D. ①③④⑤
10. 关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是( )
A. B. C. D.
第Ⅱ卷
二、填空题(本大题共6个小题,每小题4分,共24分)
11. 分解因式:=______.
12. 在一个不透明的塑料袋中装有红色、白色球共20个,除着色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有______个
13. 代数式与代数式值相等,则x=__.
14. 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=________.
15. 小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动,如图折线和线段分别表示小泽和小帅离甲地的距离(单位:千米)与时间(单位:小时)之间函数关系的图象,则当小帅到达乙地时,小泽距甲地的距离为______千米.
16. 如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点处,EF为折痕,连接.若CF=3,则tan=_____.
三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17. 计算:.
18. 解不等式组:在数轴上表示出它的解集,并求出它的正整数解.
19. 如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
20. 图1是某越野车的侧面示意图,折线段表示车后盖,已知,,,该车的高度.如图2,打开后备箱,车后盖落在处,与水平面的夹角.
(1)求打开后备箱后,车后盖最高点到地面的距离;
(2)若小琳爸爸的身高为,他从打开的车后盖处经过,有没有碰头的危险?请说明理由.
(结果精确到,参考数据:,,,)
21. 某校政治实践小组就近期人们比较关注的五个话题:“A.通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对学生进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)政治实践小组在这次活动中,调查的学生共有 人;
(2)将图中的最关注话题条形统计图补充完整;
(3)政治实践小组进行专题讨论中,甲、乙两个小组从三个话题:“A.通讯;B.民法典;C.北斗导航”中抽签(不放回)选一项进行发言,利用树状图或表格,求出两个小组选择A、B话题发言的概率.
22. 如图,是的直径,射线交于点D,E是劣弧上一点,且,过点E作于点F,延长和的延长线交与点G.
(1)证明:是的切线;
(2)若,求的半径.
23. “冰墩墩”和“雪容融”作为北京冬奥会和残奥会的吉祥物深受大家喜爱,某旗舰店销售“冰墩墩”毛绒玩具总额为24000元,销售“雪容融”毛绒玩具总额为8000元,其中“冰墩墩”的销售单价比“雪容融”的销售单价多40元,并且销售“冰墩墩”的数量是“雪容融”数量的2倍.
(1)求“冰墩墩”和“雪容融”的销售单价分别是多少元?
(2)已知“冰墩墩”和“雪容融”成本分别为100元/个和60元/个,进入2022年1月后,这两款毛绒玩具持续热销,于是该旗舰店再购进了这两款毛绒玩具共800个,其中“雪容融”的数量不超过“冰墩墩”数量的3倍,且这两款毛绒玩具购进总价不超过57600元.为回馈新老客户,该旗舰店决定对“冰墩墩”降价10%后再销售,若1月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.
24. 如图1,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数()的图像交于C,D两点(点C在点D的左边),过点C作轴于点E,过点D作轴于点F,与交于点G(4,3).
(1)当点D恰好是中点时,求此时点C的横坐标;
(2)如图2,连接,求证:;
(3)如图3,将沿折叠,点G恰好落在边上的点H处,求此时反比例函数的解析式.
25. 如图1,在平面直角坐标系中,二次函数的图象与y轴的交点坐标为,图象的顶点为M.矩形的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为.
(1)求c的值及顶点M的坐标,
(2)如图2,将矩形沿x轴正方向平移t个单位得到对应的矩形.已知边,分别与函数的图象交于点P,Q,连接,过点P作于点G.
①当时,求长;
②当点G与点Q不重合时,是否存在这样的t,使得的面积为1?若存在,求出此时t的值;若不存在,请说明理由.
26. 【问题发现】
(1)如图1,在等腰直角中,点D是斜边上任意一点,在的右侧作等腰直角,使,,连接,则和的数量关系为 ;
【拓展延伸】
(2)如图2,在等腰中,,点D是边上任意一点(不与点B,C重合),在的右侧作等腰,使,,连接,则(1)中的结论是否仍然成立,并说明理由;
【归纳应用】
(3)在(2)的条件下,若,,点D是射线上任意一点,请直接写出当时的长.
2023年云南省初中学业水平考试数学模拟预测题(2份打包,原卷版+解析版): 这是一份2023年云南省初中学业水平考试数学模拟预测题(2份打包,原卷版+解析版),共26页。
2024年云南省初中学业水平考试 数学模拟预测题(一)(原卷版+解析版): 这是一份2024年云南省初中学业水平考试 数学模拟预测题(一)(原卷版+解析版),文件包含2024年云南省初中学业水平考试数学模拟预测题一原卷版docx、2024年云南省初中学业水平考试数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
2023年贵州省遵义市初中学业水平考试数学模拟预测题(原卷版+解析版): 这是一份2023年贵州省遵义市初中学业水平考试数学模拟预测题(原卷版+解析版),文件包含2023年贵州省遵义市初中学业水平考试数学模拟预测题原卷版docx、2023年贵州省遵义市初中学业水平考试数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。