|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)01
    2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)02
    2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版),共15页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【考纲要求】
    1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=xeq \f(1,2),y=eq \f(1,x)的图象,了解它们的变化情况;
    2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.
    【考点预测】
    1.幂函数
    (1)幂函数的定义
    一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
    (2)常见的五种幂函数的图象
    (3)幂函数的性质
    ①幂函数在(0,+∞)上都有定义;
    ②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;
    ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
    2.二次函数
    (1)二次函数解析式的三种形式
    一般式:f(x)=ax2+bx+c(a≠0).
    顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).
    零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
    (2)二次函数的图象和性质
    【常用结论】
    1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.
    2.若f(x)=ax2+bx+c(a≠0),则当eq \b\lc\{(\a\vs4\al\c1(a>0,,Δ<0))时,恒有f(x)>0;当eq \b\lc\{(\a\vs4\al\c1(a<0,,Δ<0))时,恒有f(x)<0.
    3.(1)幂函数y=xα中,α的取值影响幂函数的定义域、图象及性质;
    (2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限.
    【方法技巧】
    1.幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.
    2.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.
    3.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.
    4.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.
    5.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.
    6.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.
    7.不等式恒成立求参数范围,一般有两个解题思路:一是分离参数;二是不分离参数,直接借助于函数图象求最值.这两个思路,最后都是转化为求函数的最值问题.
    二、【题型归类】
    【题型一】幂函数的图象与性质
    【典例1】若幂函数y=x-1,y=xm与y=xn在第一象限内的图象如图所示,则m与n的取值情况为( )
    A.-1B.-1C.-1D.-1【典例2】幂函数f(x)=(m2-3m+3)xm的图象关于y轴对称,则实数m=________.
    【典例3】若幂函数f(x)=在(0,+∞)上单调递增,则a等于( )
    A.1 B.6 C.2 D.-1
    【题型二】求二次函数的解析式
    【典例1】已知二次函数f(x)满足f(2)=-1, f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.
    【典例2】已知y=f(x)是二次函数,且feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)+x))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)-x))对x∈R恒成立,feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))=49,方程f(x)=0的两实根之差的绝对值等于7.求此二次函数的解析式.
    【典例3】若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.
    【题型三】二次函数的图象问题
    【典例1】在同一坐标系中,函数y=ax2+bx与y=ax+b(ab≠0)的图象可能是( )
    【典例2】设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )
    【典例3】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c在同一坐标系中的图象大致是( )
    【题型四】二次函数的单调性与最值问题
    【典例1】已知f(x)=ax2-2x+1.
    (1)若f(x)在[0,1]上单调,求实数a的取值范围;
    (2)若x∈[0,1],求f(x)的最小值g(a).
    【典例2】设函数f(x)=x2-2x-1在区间[t,t+1]上有最小值g(t),求g(t)的解析式.
    【典例3】已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.
    (1)证明:当|a|≥2时,M(a,b)≥2;
    (2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.
    【题型五】二次方程根的分布问题
    【典例1】(多选)已知函数f(x)=x2-2x+a有两个零点x1,x2,以下结论正确的是( )
    A.a<1
    B.若x1x2≠0,则eq \f(1,x1)+eq \f(1,x2)=eq \f(2,a)
    C.f(-1)=f(3)
    D.函数y=f(|x|)有四个零点
    【典例2】已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.
    【典例3】已知关于x的二次方程x2+2mx+2m+1=0.
    (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围;
    (2)若方程两根均在区间(0,1)内,求m的取值范围.
    【题型六】二次函数中的恒成立问题
    【典例1】已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,若不等式f(x)>2x+m在区间
    [-1,1]上恒成立,则实数m的取值范围为____________.
    【典例2】函数f(x)=a2x+3ax-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则a的最大值为________.
    【典例3】已知函数f(x)=x2-2ax+2a+4的定义域为R,值域为[1,+∞),则a的值为________.
    【题型七】二次函数的综合问题
    【典例1】设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.
    【典例2】已知函数f(x)=tx,g(x)=(2-t)x2-4x+1.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是( )
    A.(-∞,-2)∪(0,2]
    B.(-2,0)∪(0,2]
    C.(-2,2]
    D.(0,+∞)
    【典例3】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:
    ①∀x∈R,f(x)<0或g(x)<0;
    ②∃x∈(-∞,-4),f(x)g(x)<0.
    求实数m的取值范围.
    三、【培优训练】
    【训练一】已知函数f(x)=(x2-2x-3)(x2+ax+b)是偶函数,则f(x)的值域是________.
    【训练二】已知二次函数f(x)=x2-2tx+2t+1,x∈[-1,2].若f(x)≥-1恒成立,求t的取值范围.
    【训练三】若函数φ(x)=x2+m|x-1|在[0,+∞)上单调递增,则实数m的取值范围是__________.
    【训练四】.是否存在实数a∈[-2,1],使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,请说明理由.
    【训练五】已知二次函数f(x)=ax2+bx+1(a,b∈R且a≠0),x∈R.
    (1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;
    (2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
    【训练六】已知a,b是常数且a≠0,f(x)=ax2+bx且f(2)=0,且使方程f(x)=x有等根.
    (1)求f(x)的解析式;
    (2)是否存在实数m,n(m四、【强化测试】
    【单选题】
    1. 函数的图象是( )

    2. 若f(x)是幂函数,且满足eq \f(f4,f2)=3,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))等于( )
    A.3 B.-3 C.eq \f(1,3) D.-eq \f(1,3)
    3. 若幂函数在(0,+∞)上为增函数,则m的值为( )
    A.1或3 B.1 C.3 D.2
    4. 函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是( )
    A.[-3,0) B.(-∞,-3]
    C.[-2,0] D.[-3,0]
    5. 已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则( )
    A.a>0,4a+b=0 B.a<0,4a+b=0
    C.a>0,2a+b=0 D.a<0,2a+b=0
    6. 若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( )
    A.在(-∞,2)上递减,在[2,+∞)上递增
    B.在(-∞,3)上递增
    C.在[1,3]上递增
    D.单调性不能确定
    7. 若函数f(x)=x2+a|x|+2,x∈R在区间[3,+∞)和[-2,-1]上均为增函数,则实数a的取值范围是( )
    A.eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(11,3),-3)) B.[-6,-4]
    C.[-3,-2eq \r(2)] D.[-4,-3]
    8. 已知函数f(x)=2ax2-ax+1(a<0),若x1A.f(x1)=f(x2) B.f(x1)>f(x2)
    C.f(x1)【多选题】
    9. 已知函数f(x)=3x2-2(m+3)x+m+3的值域为[0,+∞),则实数m的取值范围为( )
    A.0 B.[-3,0]
    C.3 D.-3
    10. 若二次函数y=kx2-4x+2在区间[1,2]上是单调递增函数,则实数k的取值可以是( )
    A.0 B.1
    C.2 D.3
    11. 由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数可能具有的性质是( )
    A.在x轴上截得的线段的长度是2
    B.与y轴交于点(0,3)
    C.顶点是(-2,-2)
    D.过点(3,0)
    12. 设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的可能是( )
    A.f(-1) B.f(1)
    C.f(2) D.f(5)
    【填空题】
    13. 已知幂函数y=mxn(m,n∈R)的图象经过点(4,2),则m-n=________.
    14. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,确定下列各式的正负:b________0,ac________0,a-b+c________0.(填“>”“<”或“=”)
    15. 如果函数f(x)=x2-ax-a在区间[0,2]上的最大值为为1,那么实数a=________.
    16. 定义:如果在函数y=f(x)定义域内的给定区间[a,b]上存在x0(a【解答题】
    17. 已知函数f(x)=x2+2ax+2,x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-5,5)).
    (1)当a=-1时,求函数f(x)的最大值和最小值;
    (2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
    18. 已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).若方程f(x)+6a=0有两个相等的实根,求函数f(x)的解析式.
    19. 已知二次函数f(x)满足f(x)=f(-4-x),f(0)=3,若x1,x2是f(x)的两个零点,且|x1-x2|=2.
    (1)求f(x)的解析式;
    (2)若x>0,求g(x)=eq \f(x,f(x))的最大值.
    20. 已知函数f(x)=eq \f(ax+2-a,x+1),其中a∈R.
    (1)当函数f(x)的图象关于点P(-1,3)成中心对称时,求a的值;
    (2)若函数f(x)在(-1,+∞)上单调递减,求a的取值范围.
    21. 已知f(x)=ax2-2x+1.
    (1)若f(x)在[0,1]上单调,求实数a的取值范围;
    (2)若x∈[0,1],求f(x)的最小值g(a).
    22. 如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.
    (1)求t1与f(t1)的值;
    (2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.
    函数
    y=ax2+bx+c
    (a>0)
    y=ax2+bx+c
    (a<0)
    图象
    (抛物线)
    定义域
    R
    值域
    eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(4ac-b2,4a),+∞))
    eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(4ac-b2,4a)))
    对称轴
    x=-eq \f(b,2a)
    顶点
    坐标
    eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(b,2a),\f(4ac-b2,4a)))
    奇偶性
    当b=0时是偶函数,当b≠0时是非奇非偶函数
    单调性
    在eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(b,2a)))上是减函数;
    在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上是增函数
    在eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(b,2a)))上是增函数;
    在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上是减函数
    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题12函数的图象(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题12函数的图象(学生版),共12页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题13函数与方程(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题13函数与方程(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题09幂函数与二次函数(学生版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map