|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)01
    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)02
    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)03
    还剩5页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)

    展开
    这是一份2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版),共8页。试卷主要包含了直线的倾斜角,斜率公式,直线方程的五种形式等内容,欢迎下载使用。


    知识梳理
    1.直线的倾斜角
    (1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.
    (2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0.
    (3)范围:直线l倾斜角的取值范围是[0,π).
    2.斜率公式
    (1)定义式:直线l的倾斜角为αeq \b\lc\(\rc\)(\a\vs4\al\c1(α≠\f(π,2))),则斜率k=tan α.
    (2)坐标式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率 k=eq \f(y2-y1,x2-x1).
    3.直线方程的五种形式

    题型归纳
    题型1 直线的倾斜角与斜率
    【例1-1】直线xcsα﹣y﹣4=0的倾斜角的取值范围是( )
    A.[0,π)B.
    C.D.
    【分析】先求出斜率的范围,再根据倾斜角和斜率的关系,求出倾斜角的取值范围.
    【解答】解:由于直线xcsα﹣y﹣4=0的斜率为 csα∈[﹣1,1],设倾斜角为θ,θ∈[0,π),
    则tanθ∈[﹣1,1],∴θ∈[0,]∪[,π),
    故选:D.
    【例1-2】已知点A(﹣2,﹣3)和点B(﹣1,0)是平面直角坐标系中的定点,直线y=kx+1与线段AB始终相交,则实数k的取值范围是( )
    A.[1,2]B.[﹣2,1]C.[﹣2,﹣1]D.[,1]
    【分析】根据题意,分析可得点A、B分别在直线y=kx+1的两侧或直线上,由一元二次不等式的几何意义可得(﹣2k+3+1)(﹣k+1)≤0,解可得k的取值范围,即可得答案.
    【解答】解:根据题意,直线y=kx+1与线段AB始终相交,则点A、B分别在直线y=kx+1的两侧或直线上,
    则有(﹣2k+3+1)(﹣k+1)≤0,
    解可得:1≤k≤2,即k的取值范围为[1,2];
    故选:A.
    【跟踪训练1-1】过点A(2,1),B(m,3)的直线的倾斜角α的范围是,则实数m的取值范围是( )
    A.0<m≤2B.0<m<4
    C.2≤m<4D.0<m<2或2<m<4
    【分析】由直线的倾斜角的范围求出直线的斜率的范围,再由两点求斜率求出AB所在直线的斜率,得到关于m的不等式,求解m的范围,再由m=2时直线的倾斜角为,符合题意,则答案可求.
    【解答】解:由直线的倾斜角α的范围是,
    得直线的斜率存在时,有k<﹣1或k>1.
    又kAB=,
    ∴或,
    解得0<m<2或2<m<4.
    当直线的斜率不存在时,m=2.
    综上,实数m的取值范围是(0,4).
    故选:B.
    【跟踪训练1-2】已知直线l过点P(1,0)且与线段y=2(﹣2≤x≤2)有交点,设直线l的斜率为k,则k的取值范围是( )
    A.(﹣∞,﹣]∪[2,+∞)B.[﹣,2]
    C.(﹣∞,﹣)∪(2,+∞)D.(﹣,2)
    【分析】先求出PA、PB的斜率,再根据题意求出k的范围.
    【解答】解:如图,,,
    由于直线l与线段y=2(﹣2≤x≤2)有交点,
    故k≥2,或 k≤﹣,
    故选:A.
    【名师指导】
    题型2 直线的方程
    【例2-1】已知直线l经过点P(﹣1,2),且倾斜角为135°,则直线l的方程为( )
    A.x+y﹣3=0B.x+y﹣1=0C.x﹣y+1=0D.x﹣y+3=0
    【分析】由直线l的倾斜角为135°,所以可求出直线l的斜率,进而根据直线的点斜式方程写出即可.
    【解答】解:∵直线l的倾斜角为135°,
    ∴斜率=tan135°=﹣1,
    又直线l过点(﹣1,2),
    ∴直线的点斜式为y﹣2=﹣1(x+1),
    即x+y﹣1=0.
    故选:B.
    【例2-2】(多选)已知直线l过点P(2,4),在x轴和y轴上的截距相等,则直线l的方程可能为( )
    A.x﹣y+2=0B.x+y﹣6=0C.x=2D.2x﹣y=0
    【分析】分直线l的斜率存在与不存在分类求解得答案.
    【解答】解:当直线l过原点时,直线方程为y=2x,即2x﹣y=0;
    当直线l不过原点时,设直线方程为x+y=m,则m=2+4=6,
    ∴直线方程为x+y﹣6=0.
    ∴直线l的方程可能为2x﹣y=0或x+y﹣6=0.
    故选:BD.
    【例2-3】已知A(3,2),B(﹣2,3),C(4,5),则△ABC的BC边上的中线所在的直线方程为( )
    A.x+y+1=0B.x+y﹣1=0C.x+y﹣5=0D.x﹣y﹣5=0
    【分析】根据题意,设BC的中点为D,求出D的坐标,进而求出直线AD的斜率,结合直线的点斜式方程分析可得答案.
    【解答】解:根据题意,设BC的中点为D,
    又由B(﹣2,3),C(4,5),则D的坐标为(1,4),
    又由A(3,2),则kAD=1,
    故△ABC的BC边上的中线所在的直线方程为y﹣2=﹣(x﹣3),即x+y﹣5=0;
    故选:C.
    【例2-4】过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( )
    A.x﹣y+1=0B.x+y﹣3=0
    C.2x﹣y=0或x+y﹣3=0D.2x﹣y=0或x﹣y+1=0
    【分析】讨论直线过原点和不过原点时,分别求出对应的直线方程即可.
    【解答】解:当直线过原点时,可得斜率为k==2,
    所以直线方程为y=2x,即2x﹣y=0;
    当直线不过原点时,设方程为+=1,
    代入点(1,2)可得﹣=1,解得a=﹣1,
    所以直线方程为x﹣y+1=0;
    综上知,所求直线方程为:2x﹣y=0或x﹣y+1=0.
    故选:D.
    【跟踪训练2-1】如果直线x﹣4y+b=0的纵截距为正,且与两坐标轴围成的三角形的面积为8,则b= .
    【分析】由题意知,可用斜截式求出直线x﹣4y+b=0的方程,得到它与两坐标轴的交点坐标,代入三角形的面积公式进行运算.
    【解答】解:由题意知,直线的方程为 y=x+(b>0),它与两坐标轴的焦点为(0,)和(﹣b,0),
    ∴它与两坐标轴围成的三角形的面积为 ••b=8,
    解得b=8.
    故答案是:8.
    【跟踪训练2-2】在y轴上的截距为﹣6,且与y轴相交成30°角的直线方程是 .
    【分析】与y轴相交成30°角的直线方程的斜率为k=tan60°=,或k=tan120°=﹣,由此能求出y轴上的截距为﹣6,且与y轴相交成30°角的直线方程.
    【解答】解:与y轴相交成30°角的直线方程的斜率为:
    k=tan60°=,或k=tan120°=﹣,
    ∴y轴上的截距为﹣6,且与y轴相交成30°角的直线方程是:
    y=x﹣6或y=﹣﹣6.
    故答案为:y=x﹣6或y=﹣x﹣6.
    【跟踪训练2-3】一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是( )
    A.B.
    C.D.
    【分析】根据题意,分析直线线的斜率,即可得其倾斜角,进而可得所求直线的倾斜角与斜率,由直线的点斜式方程分析可得答案.
    【解答】解:根据题意,已知直线的斜率k=,则其倾斜角为30°,
    故所求直线的倾斜角为60°,得出其斜率为,
    由直线的点斜式得y﹣(﹣)=(x﹣2),即.
    故选:B.
    【名师指导】
    1.求解直线方程的2种方法
    2.谨防3种失误
    (1)应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在.
    (2)应用“截距式”方程时要注意讨论直线是否过原点,截距是否为0.
    (3)应用一般式Ax+By+C=0确定直线的斜率时注意讨论B是否为0.
    题型3 直线方程的综合问题
    【例3-1】△ABC中,A(0,1),AB边上的高CD所在直线的方程为x+2y﹣4=0,AC边上的中线BE所在直线的方程为2x+y﹣3=0.
    (1)求直线AB的方程;
    (2)求直线BC的方程;
    (3)求△BDE的面积.
    【分析】(1)由CD所在直线的方程求出直线AB的斜率,再由点斜式写出AB的直线方程;
    (2)先求出点B,点C的坐标,再写出BC的直线方程;
    (3)由点到直线的距离求出E到AB的距离d,以及B到CD的距离BD,计算S△BDE即可.
    或求出BE,D到BE的距离d,计算S△BDE.
    【解答】解:(1)∵CD所在直线的方程为x+2y﹣4=0,
    ∴直线AB的斜率为2,
    ∴AB边所在的直线方程为y﹣1=2(x﹣0),即2x﹣y+1=0;
    (2)由,得,
    即直线AB与AC边中线BE的交点为B(,2);
    设C(m,n),
    则由已知条件得,
    解得,∴C(2,1);
    ∴所以BC边所在的直线方程为=,即2x+3y﹣7=0;
    (3)∵E是AC的中点,∴E(1,1),
    ∴E到AB的距离为:d=;
    又点B到CD的距离为:BD=,
    ∴S△BDE=•d•BD=.
    另解:∵E是AC的中点,∴E(1,1),
    ∴BE=,
    由,
    得,∴D(,),
    ∴D到BE的距离为:d=,
    ∴S△BDE=•d•BE=.
    【跟踪训练3-1】已知△ABC的三个顶点坐标为A(﹣3,1),B(3,﹣3),C(1,7).
    (1)求BC边的中线所在直线方程的一般式方程;
    (2)求△ABC的面积.
    【分析】(1)利用中点坐标公式、两点式即可得出.
    (2)三角形的面积公式即可计算得解.
    【解答】解:(1)设BC的中点M的坐标为(x,y),
    所以x==2,y==2,即点M的坐标为(2,2).
    由两点式得:x﹣5y+8=0.
    所以BC边的中线所在直线方程的一般式方程为:x﹣5y+8=0;
    (2)∵直线BC的方程为:5x+y﹣12=0.
    dA﹣BC==,|BC|==2,
    S△ABC=|BC|dA﹣BC=×2×=26.
    【名师指导】
    与直线方程有关问题的常见类型及解题策略
    (1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.
    (2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.
    (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.名称
    方程
    适用范围
    点斜式
    y-y0=k(x-x0)
    不含垂直于x轴的直线
    斜截式
    y=kx+b
    不含垂直于x轴的直线
    两点式
    eq \f(y-y1,y2-y1)=eq \f(x-x1,x2-x1)
    不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)
    截距式
    eq \f(x,a)+eq \f(y,b)=1
    不含垂直于坐标轴和过原点的直线
    一般式
    Ax+By+C=0,A2+B2≠0
    平面内所有直线都适用
    数形结合法
    作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定
    函数图象法
    根据正切函数图象,由倾斜角范围求斜率范围,反之亦可
    直接法
    根据已知条件,选择适当的直线方程形式,直接写出直线方程
    待定系数法
    ①设所求直线方程的某种形式;
    ②由条件建立所求参数的方程(组);
    ③解这个方程(组)求出参数;
    ④把参数的值代入所设直线方程
    相关试卷

    2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(学生版): 这是一份2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(学生版),共5页。试卷主要包含了直线的倾斜角,斜率公式,直线方程的五种形式等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归纳与达标检测第44讲直线的倾斜角、斜率与直线的方程(讲)(Word版附解析): 这是一份2024年新高考数学一轮复习题型归纳与达标检测第44讲直线的倾斜角、斜率与直线的方程(讲)(Word版附解析),共6页。试卷主要包含了直线的倾斜角,斜率公式,直线方程的五种形式等内容,欢迎下载使用。

    高中数学高考第44讲 直线的倾斜角、斜率与直线的方程(讲)(学生版): 这是一份高中数学高考第44讲 直线的倾斜角、斜率与直线的方程(讲)(学生版),共7页。试卷主要包含了直线的倾斜角,斜率公式,直线方程的五种形式等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习知识梳理与题型归纳第44讲直线的倾斜角斜率与直线的方程(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map