终身会员
搜索
    上传资料 赚现金
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版
    立即下载
    加入资料篮
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版01
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版02
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版

    展开
    这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


    一、单选题
    1.(2020·北京·高三校考强基计划)设A,B,C是集合的子集,且满足,这样的有序组的总数是( )
    A.B.C.D.
    2.(2021·全国·高一专题练习)已知非空集合是集合的子集,若同时满足两个条件:(1)若,则;(2)若,则;则称是集合的“互斥子集”,并规定与为不同的“互斥子集组”,则集合的不同“互斥子集组”的个数是( )
    A.B.C.D.
    3.(2021·北京·高三强基计划)现有7把钥匙和7把锁.用这些钥匙随机开锁,则这三把钥匙不能打开对应的锁的概率是( )
    A.B.C.D.以上答案都不对
    4.(2021·全国·高一专题练习)设集合S,T,S,T中至少有2个元素,且S,T满足:①对于任意的,若,则;②对于任意的,若,则.若S有3个元素,则T可能有( )
    A.2个元素B.3个元素C.4个元素D.5个元素
    5.(2021·北京·高三强基计划)设正整数m,n均不大于2021,且,则这样的数组的个数为( )
    A.2021B.1428
    C.3449D.以上答案都不对
    二、填空题
    6.(2022·新疆·高二竞赛)设集合中的最大元素与最小元素分别为M,N,则___________.
    7.(2022·浙江·高二竞赛)已知集合,若集合A中恰有9个正整数,则______.
    8.(2020·江苏·高三竞赛)设,欧拉函数表示在正整数1,2,3,…,中与互质的数的个数,例如1,3都与4互质,2,4与4不互质,所以,则__________.
    9.(2022·广西·高二统考竞赛)设、是集合的两个子集,,且时.记为的元素之和,则的最大值是______.
    10.(2022·福建·高二统考竞赛)已知,,…,是集合的n个非空子集,如果对于任意的i,,均有,则n的最大值为___________.
    11.(2022·浙江金华·高三浙江金华第一中学校考竞赛)定义:如果甲队赢了乙队,乙队赢了丙队,而丙队又赢了甲队,则称甲乙丙为一个“友好组”.如果20支球队参加单循环比赛,则友好组个数的最大值为__________.
    12.(2021·全国·高三竞赛)已知非空集合,用表示集合中最大数和最小数的和,则所有这样的的和为_____.
    13.(2020·浙江·高三专题练习)记为集合S的元素个数,为集合S的子集个数,若集合A,B,C满足:①;②,则的最大值是____________.
    14.(2022·全国·高三专题练习)已知,集合,集合的所有非空子集的最小元素之和为,则使得的最小正整数n的值为______.
    15.(2022·浙江·高二竞赛)给定正整数n,,记从的一一映射f称为是可划分的:若X可划分为k个非空子集,,…,,且(,2,…,k)(即,且,,…,两两的交集为空集,).已知f是一个X的划分的一一映射,,,…,是1,2,…,n的一个排列,则的最小值为______.
    16.(2022·北京·高一统考竞赛)对实数,不超过的最小值的最大整数为__________.
    17.(2022·北京·高一统考竞赛)有__________个不超过2020的正整数k,满足对任意的正整数n,均有.
    三、解答题
    18.(2021·浙江·高二竞赛)设数集,它的平均数.现将分成两个非空且不相交子集,,求的最大值,并讨论取到最大值时不同的有序数对的数目.
    19.(2022·福建·高二统考竞赛)某校数学兴趣小组有14位同学,他们组成了n个不同的课题组.每个课题组有6位同学,每位同学至少参加2个课题组,且任意两个课题组至多有2位共同的同学,求n的最大值.
    20.(2022春·浙江·高一校联考竞赛)已知,求最大的实数,使得对任意大于2022的正整数及实数,存在集合的一个子集满足对所有恒成立且.
    21.(2021·全国·高三竞赛)设集合是由平面上任意三点不共线的4039个点构成的集合,且其中2019个点为红色,2020个点为蓝色;在平面上画出一组直线,可以将平面分成若干区域,若一组直线对于点集满足下述两个条件,称这是一个“好直线组”:
    (1)这些直线不经过该点集中的任何一个点;
    (2)每个区域中均不会同时出现两种颜色的点.
    求的最小值,使得对于任意的点集,均存在由条直线构成的“好直线组”.
    22.(2021·全国·高三竞赛)已知是一个有限集.是满足如下性质的两个分划:若,则.求的最小值.
    23.(2021·全国·高三竞赛)设是连续个正整数组成的集合,求最小的正整数k,使得M的任何k元子集中都存在个数满足.
    24.(2021·全国·高三竞赛)设n是正整数,我们说集合的一个排列具有性质P,是指在当中至少有一个i,使得.求证:对于任何n,具有性质P的排列比不具有性质P的排列的个数多.
    25.(2023·全国·高三专题练习)设数列()的各项均为正整数,且.若对任意,存在正整数使得,则称数列具有性质.
    (1)判断数列与数列是否具有性质;(只需写出结论)
    (2)若数列具有性质,且,,,求的最小值;
    (3)若集合,且(任意,).求证:存在,使得从中可以选取若干元素(可重复选取)组成一个具有性质的数列.
    26.(2019·浙江·高三校联考竞赛)设X是有限集,t为正整数,F是包含t个子集的子集族:F=.如果F中的部分子集构成的集族S满足:对S中任意两个不相等的集合A、B,均不成立,则称S为反链.设S1为包含集合最多的反链,S2是任意反链.证明:存在S2到S1的单射f,满足或成立.
    27.(2022·全国·高三专题练习)对给定的正整数,令,,,,,,2,3,,.对任意的,,,,,,,,定义与的距离.设是的含有至少两个元素的子集,集合,,中的最小值称为的特征,记作(A).
    (Ⅰ)当时,直接写出下述集合的特征:,0,,,1,,,0,,,1,,,0,,,1,,,0,,,0,,,1,,,1,.
    (Ⅱ)当时,设且(A),求中元素个数的最大值;
    (Ⅲ)当时,设且(A),求证:中的元素个数小于.
    28.(2022·全国·高三专题练习)班级里共有名学生,其中有,,.已知,,中任意两人均为朋友,且三人中每人均与班级里中超过一半的学生为朋友.若对于某三个人,他们当中任意两人均为朋友,则称他们组成一个“朋友圈”.
    (1)求班级里朋友圈个数的最大值.
    (2)求班级里朋友圈个数的最小值.
    29.(2022·浙江杭州·高三学军中学校考竞赛)我们称为“花式集合”,如果它满足如下三个条件:
    (a);
    (b)的每个元素都是包含于中的闭区间(元素可重复);
    (c)对于任意实数中包含的元素个数不超过1011.
    对于“花式集合”和区间,用表示使得的对的数量.求的最大值.
    30.(2020·江苏南通·统考模拟预测)整数,集合,A,B,C是集合P的3个非空子集,记,为所有满足,的有序集合对的个数.
    (1)求;
    (2)求.
    相关试卷

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题06 不等式 真题专项训练(全国竞赛+强基计划专用)原卷及解析版: 这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题06 不等式 真题专项训练(全国竞赛+强基计划专用)原卷及解析版,文件包含高中数学竞赛真题•强基计划真题考前适应性训练专题06不等式真题专项训练全国竞赛+强基计划专用原卷版docx、高中数学竞赛真题•强基计划真题考前适应性训练专题06不等式真题专项训练全国竞赛+强基计划专用解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    高中数学竞赛专题大全竞赛专题11概率50题竞赛真题强化训练含解析: 这是一份高中数学竞赛专题大全竞赛专题11概率50题竞赛真题强化训练含解析,共32页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    高中数学竞赛专题大全竞赛专题6数列50题竞赛真题强化训练含解析: 这是一份高中数学竞赛专题大全竞赛专题6数列50题竞赛真题强化训练含解析,共35页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map