搜索
    上传资料 赚现金
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版
    立即下载
    加入资料篮
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版01
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版02
    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版

    展开
    这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版,共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。


    一、单选题
    1.(2020·北京·高三强基计划)从圆上的点向椭圆引切线,两个切点间的线段称为切点弦,则椭圆C内不与任何切点弦相交的区域面积为( )
    A.B.C.D.前三个答案都不对
    2.(2022·北京·高三校考强基计划)内接于椭圆的菱形周长的最大值和最小值之和是( )
    A.B.C.D.上述三个选项都不对
    3.(2020·湖北武汉·高三统考强基计划)已知直线,动点在椭圆上,作交于点,作交于点.若为定值,则( )
    A.B.C.D.
    4.(2020·北京·高三强基计划)设直线与椭圆交于A,B两点,O为坐标原点,则面积的最大值为( )
    A.8B.10C.12D.前三个答案都不对
    5.(2022·贵州·高二统考竞赛)如图,,是离心率都为的椭圆,点A,B是分别是的右顶点和上顶点,过A,B两点分别作的切线,.若直线,的斜率分别为,,则的值为( )
    A.B.C.D.
    6.(2020·湖北武汉·高三统考强基计划)过椭圆的中心作两条互相垂直的弦和,顺次连接得一四边形,则该四边形的面积可能为( )
    A.10B.12C.14D.16
    7.(2019·贵州·高三校联考竞赛)设椭圆C:的左、右焦点分别为,其焦距为2c.点在椭圆的内部,点M是椭圆C上的动点,且恒成立,则椭圆C的离心率的取值范围是( )
    A.B.C.D.
    二、多选题
    8.(2022·贵州·高二统考竞赛)如图,M,N分别是两直角边上的动点,P是线段MN的中点,则以下结论正确的是( )
    A.当△AMN的面积为定值时,点P的轨迹为双曲线一支
    B.当|MN|为定值时,点P的轨迹为一圆弧
    C.当为定值时, 点P的轨迹为不含端点线段
    D.当△AMN的周长为定值时,点P的轨迹为抛物线
    9.(2020·北京·高三校考强基计划)已知A,B分别为双曲线的左、右顶点,P为该曲线上不同于A,B的任意一点设的面积为S,则( )
    A.为定值B.为定值
    C.为定值D.为定值
    10.(2020·北京·高三校考强基计划)已知点,P为椭圆上的动点,则的( )
    A.最大值为B.最大值为
    C.最小值为D.最小值为
    三、填空题
    11.(2022·江苏南京·高三强基计划)设F,l分别为双曲线的右焦点与右准线,椭圆以F和l为其对应的焦点及准线,过F作一条平行于的直线,交椭圆于A、B两点,若的中心位于以AB为直径的圆外,则椭圆离心率e的范围为___________.
    12.(2018·山东·高三竞赛)若直线交椭圆(,且、为整数)于点、.设为椭圆的上顶点,而的重心为椭圆的右焦点,则椭圆的方程为______.
    13.(2022·新疆·高二竞赛)设z为复数,若方程表示一条圆锥曲线,则此曲线的离心率___________.
    14.(2021·全国·高三竞赛)已知集合满足,若P为集合B的边界线C上任意一点,为曲线C的焦点,I为的内心,直线和的斜率分别为,且则t的最小值为________.
    15.(2021·全国·高三竞赛)已知的四个顶点均在双曲线上,点在边上,且,则的面积等于_______.
    四、解答题
    16.(2022·湖北武汉·高三统考强基计划)设为椭圆:的左焦点,为椭圆上的一点
    (1)作正方形(,,,按逆时针排列)当沿着椭圆运动一周,求动点的轨迹方程.
    (2)设为椭圆外一点,求的取值范围.
    17.(2018·全国·高三竞赛)一束直线的每条均过xOy平面内的抛物线的焦点,与抛物线C交于点、.若的斜率为1,的斜率为,求的解析式.
    18.(2018·福建·高三竞赛)已知、分别为椭圆的左、右焦点,点在椭圆上,且的垂心为.
    (1)求椭圆的方程;
    (2)设为椭圆的左顶点,过点的直线交椭圆于、两点.记直线、的斜率分别为、,若,求直线的方程.
    19.(2018·江西·高三竞赛)若椭圆上不同的三点,,到椭圆右焦点的距离顺次成等差数列,线段的中垂线交轴于点,求直线的方程.
    20.(2018·湖北·高三竞赛)已知为坐标原点,,点为直线上的动点,的平分线与直线交于点,记点的轨迹为曲线.
    (1)求曲线的方程;
    (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围.
    21.(2021·全国·高三竞赛)过抛物线(p为不等于2的质数)的焦点F,作与x轴不垂直的直线l交抛物线于M、N两点,线段的垂直平分线交于P点,交x轴于Q点.
    (1)求中点R的轨迹L的方程;
    (2)证明:L上有无穷多个整点(横、纵坐标均为整数的点),但L上任意整点到原点的距离均不是整数.
    22.(2021·全国·高三竞赛)已知椭圆的右焦点为,上顶点为M,圆,问:椭圆E上是否存在两点P、Q使得圆F内切于三角形?若存在,求出直线的方程;若不存在,请说明理由.
    23.(2021·全国·高三竞赛)如图所示,为抛物线外一点,过P引抛物线的两条切线,切点分别为A、B.在线段上取两点D、E,使得.若过D、E两点的直线分别切抛物线于M、N两点(异于A).求四边形面积的最大值.
    24.(2021·全国·高三竞赛)已知椭圆,其右焦点为F,过F作直线l交椭圆于A、B两点(l与x轴不重合),设线段中点为D,连结(O为坐标原点),直线交椭圆于M、N两点,若A、M、B、N四点共圆,且,求椭圆的离心率.
    25.(2018·甘肃·高三竞赛)已知椭圆过点,且右焦点为.
    (1)求椭圆的方程;
    (2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;
    (3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.
    26.(2018·山东·高三竞赛)已知圆与曲线,,,为曲线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.
    27.(2022·福建·高二统考竞赛)已知椭圆C:的离心率为,、分别为椭圆C的左、右顶点,、分别为椭圆C的左、右焦点,B为椭圆C的上顶点,且的外接圆半径为.
    (1)求椭圆C的方程;
    (2)设与x不垂直的直线l交椭圆C于P、Q两点(P、Q在x轴的两侧),记直线、、、的斜率分别为、、、.已知,求面积的取值范围.
    28.(2022·新疆·高二竞赛)如图,已知内接于抛物线,且边所在直线分别与抛物线相切,F为抛物线M的焦点.求证:
    (1)边所在直线与抛物线M相切;
    (2)A,C,B,F四点共圆.
    (2021·全国·高三竞赛)已知为椭圆上的点,对椭圆上的任意两点P、Q,用如下办法定义它们的“和”:过点S作一条平行于(若点P与Q重合,则直线表示椭圆在P处的切线)的直线l与椭圆交于不同于S的另一点,记作(若l与椭圆相切,则规定S为).并规定.
    29.若点,求、以及的坐标.
    30.在椭圆上是否存在不同于S的点P,满足?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.
    相关试卷

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题10 复数 真题专项训练(全国竞赛+强基计划专用)原卷版: 这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题10 复数 真题专项训练(全国竞赛+强基计划专用)原卷版,共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)解析版: 这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)解析版,共31页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    【高中数学竞赛真题•强基计划真题考前适应性训练】 专题05 数列 真题专项训练(全国竞赛+强基计划专用)原卷版: 这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题05 数列 真题专项训练(全国竞赛+强基计划专用)原卷版,共6页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)原卷版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map