所属成套资源:备战2024年中考数学一轮复习重难题型(全国通用)
- 专题04 尺规作图(角平分线、垂直平分线、作角等于已知角、作垂线)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题05 新定义与阅读理解-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题07 简单几何证明题(三角形全等、特殊四边形判定、与相似有关的证明)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
专题06 方程(组)及不等式的应用(一次方程、分式方程、不等式方程、二次方程应用)-备战2024年中考数学一轮复习重难题型(全国通用)
展开这是一份专题06 方程(组)及不等式的应用(一次方程、分式方程、不等式方程、二次方程应用)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题06方程组及不等式的应用一次方程分式方程不等式方程二次方程应用原卷版docx、专题06方程组及不等式的应用一次方程分式方程不等式方程二次方程应用解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题06方程(组)及不等式的应用
(一次方程、分式方程、不等式方程、二次方程应用)
类型一一次方程应用
1.(2023·四川自贡·统考中考真题)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.
2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?
3.(2023·重庆·统考中考真题)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.
(1)求甲、乙两区各有农田多少亩?
(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?
4.(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
(1)这台M型平板电脑价值多少元?
(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?
5.(2022·江苏连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.
6.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.
(1)求该班的学生人数;
(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?
7.(2021·陕西中考真题)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.
8.(2023·江苏连云港·统考中考真题)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:
(1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;
(2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;
(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)
8.(2022·湖南娄底)“绿水青山就是金山银山”.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为.
(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;
(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?
9.(2023·全国·统考中考真题)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.
10.(2023·安徽·统考中考真题)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨,乙地降价元,已知销售单价调整前甲地比乙地少元,调整后甲地比乙地少元,求调整前甲、乙两地该商品的销售单价.
11.(2023·湖南张家界·统考中考真题)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:
(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?
12.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售两种品牌的盐皮蛋,若购买9箱种盐皮蛋和6箱种盐皮蛋共需390元;若购买5箱种盐皮蛋和8箱种盐皮蛋共需310元.
(1)种盐皮蛋、种盐皮蛋每箱价格分别是多少元?
(2)若某公司购买两种盐皮蛋共30箱,且种的数量至少比种的数量多5箱,又不超过种的2倍,怎样购买才能使总费用最少?并求出最少费用.
13.(2022·湖南衡阳)冰墩墩(Bing Dwen Dwen)、雪容融(Shuey Rhn Rhn)分别是2022年北京冬奥会、冬残奥会的吉样物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.
(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?
14.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.
(1)求笔记本的单价和单独购买一支笔芯的价格;
(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.
15.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.
16.(2023·湖北宜昌·统考中考真题)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
(1)求豆沙粽和肉粽的单价;
(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);
①根据上表,求豆沙粽和肉粽优惠后的单价;
②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为包,包,A,B两种包装的销售总额为17280元.求m的值.
类型二分式方程应用
17.(2023·广东·统考中考真题)某学校开展了社会实践活动,活动地点距离学校,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的倍,结果甲比乙早到,求乙同学骑自行车的速度.
18.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
(1)A,B两种型号充电桩的单价各是多少?
(2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
19.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
20.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?
21.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家的洞庭湖博物馆参观.小明从家骑自行车先走,后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.
22.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.
23.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍.
(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;
(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度.
24.(2021·江苏扬州市·中考真题)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?
25.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.
26.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.
(1)足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?
27.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.
(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?
(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?
28.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
29.(2021·四川自贡市·中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
30.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.
31.(2021·四川广安市·中考真题)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:
已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.
(1)求的值;
(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?
32.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
(1)A,B两种花卉每盆各多少元?
(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
类型三不等式方程应用
33.(2023·广东深圳·统考中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.
(1)求A,B玩具的单价;
(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?
34.(2023·内蒙古赤峰·统考中考真题)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同:3件甲种电子产品比2件乙种电子产品的销售多元.
(1)求甲种电子产品与乙种电子产品销售单价各多少元?
(2)若使甲乙两种电子产品的销售总收入不低于万元,则至少销售甲种电子产品多少件?
35.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.
(1)求该班的学生人数;
(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?
36.(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
37.(2022·四川成都)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是,乙骑行的路程与骑行的时间之间的关系如图所示.
(1)直接写出当和时,与之间的函数表达式;(2)何时乙骑行在甲的前面?
38.(2022·湖北黄冈)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.
(1)买一份甲种快餐和一份乙种快餐各需多少元?
(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?
39.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.
活动一:所购商品按原价打八折;
活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.
(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.
(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.
40.(2022·湖南邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?
41.(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.
(1)求,饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,
①求的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
42.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.
(1)求每个B型点位每天处理生活垃圾的吨数;
(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?
43.(2023·湖南·统考中考真题)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.低碳环保,绿色出行成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台元,乙型自行车进货价格为每台元.该公司销售台甲型自行车和台乙型自行车,可获利元,销售台甲型自行车和台乙型自行车,可获利元.
(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?
(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共台,且资金不超过元,最少需要购买甲型自行车多少台?
44.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客人的种客车若干辆,则有人没有座位;若租用可坐乘客人的种客车,则可少租辆,且恰好坐满.
(1)求原计划租用种客车多少辆?这次研学去了多少人?
(2)若该校计划租用、两种客车共辆,要求种客车不超过辆,且每人都有座位,则有哪几种租车方案?
(3)在(2)的条件下,若种客车租金为每辆元,种客车租金每辆元,应该怎样租车才最合算?
类型四二次方程应用
45.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
46.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
47.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
48.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长率;
(2)按照这个增长率,预计4月份平均日产量为多少?
49.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加.5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元.求的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了.求6月份每吨再生纸的利润是多少元?
50.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
51.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
52.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.
(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?
(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加,这两种小面的总销售额在4月的基础上增加.求a的值.
53.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.
(1)A、B两种产品的销售单价分别是多少元?
(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加%.求a的值.
类型五方程综合
54.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.
55.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?
56.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.
(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?
阶梯
年用气量
销售价格
备注
第一阶梯
(含400)的部分
2.67元
若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.
第二阶梯
(含1200)的部分
3.15元
第三阶梯
以上的部分
3.63元
甲型客车
乙型客车
载客量(人/辆)
45
60
租金(元/辆)
200
300
豆沙粽数量
肉粽数量
付款金额
小欢妈妈
20
30
270
小乐妈妈
30
20
230
水果单价
甲
乙
进价(元/千克)
售价(元/千克)
20
25
购票方式
甲
乙
丙
可游玩景点
和
门票价格
100元/人
80元/人
160元/人
营养品信息表
营养成份
每千克含铁42毫克
配料表
原料
每千克含铁
甲食材
50毫克
乙食材
10毫克
规格
每包食材含量
每包单价
A包装
1千克
45元
B包装
0.25千克
12元
相关试卷
这是一份题型03 方程应用(复习讲义)(11次、21次方程、11次不等式、分式方程、12次方程应用)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型三方程应用复习讲义一元一次方程二元一次方程一元一次不等式分式方程一元二次方程应用原卷版docx、题型三方程应用复习讲义一元一次方程二元一次方程一元一次不等式分式方程一元二次方程应用解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份题型03 方程应用 类型一 一次方程及不等式(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型三方程应用类型一一次方程及不等式专题训练原卷版docx、题型三方程应用类型一一次方程及不等式专题训练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份题型三 方程应用 类型一 一次方程及不等式(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型三方程应用类型一一次方程及不等式专题训练原卷版docx、题型三方程应用类型一一次方程及不等式专题训练解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。