适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练23利用导数研究不等式恒能成立问题课件新人教A版
展开1.(2024·四川广安模拟)已知函数f(x)=ln x-2ax.(1)讨论函数f(x)的单调性;(2)若f(x)≤0恒成立,求实数a的取值范围.
2.(2024·陕西西安联考)已知函数f(x)=ln x-ax- .(1)当a=2时,求f(x)的极值;(2)若不等式f(x)≤-e-ax恒成立,求a的取值范围.
当x∈(0,1)时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以当x=1时,f(x)取得极大值f(1)=0-2-1=-3,故f(x)的极大值为-3,无极小值.
3.(2024·江苏无锡模拟)已知函数f(x)=-x+ln x,g(x)=xex-2x-m.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求实数m的取值范围.
解 (1)由已知可得,函数f(x)的定义域为(0,+∞),且f'(x)= ,当0
因此,当0
(方法二)令m(x)=ex-x-1,m'(x)=ex-1,当x<0时,m'(x)<0;当x>0时,m'(x)>0,所以m(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以m(x)≥m(0)=0,即ex≥x+1.因为xex=ex+ln x,所以xex=ex+ln x≥x+ln x+1,当x+ln x=0时,等号成立,即xex-x-ln x≥1,当x+ln x=0时,等号成立,所以y=xex-x-ln x的最小值为1.若f(x)≤g(x)恒成立,则xex-x-ln x≥m恒成立,所以当m≤1时,f(x)≤g(x)恒成立.所以m的取值范围是(-∞,1].
4.(2024·福建泉州模拟)已知函数f(x)=x2-mxln x+1,m∈R且m≠0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)≥ 恒成立,其中e是自然对数的底数,求实数m的取值范围.
解 (1)当m=1时,f(x)=x2-xln x+1,f'(x)=2x-ln x-1,f'(1)=1,f(1)=2,所以切线方程为y-2=x-1,化简得x-y+1=0,即曲线f(x)在点(1,f(1))处的切线方程为x-y+1=0.
适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练25利用导数研究函数的零点课件新人教A版: 这是一份适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练25利用导数研究函数的零点课件新人教A版,共11页。
适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练24利用导数证明不等式课件新人教A版: 这是一份适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练24利用导数证明不等式课件新人教A版,共12页。
适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练20利用导数研究函数的单调性课件新人教A版: 这是一份适用于新高考新教材备战2025届高考数学一轮总复习第4章一元函数的导数及其应用课时规范练20利用导数研究函数的单调性课件新人教A版,共26页。PPT课件主要包含了-∞1,0+∞等内容,欢迎下载使用。