四川省成都市新津区成外学校2023-2024学年高二下学期3月月考数学试题(原卷版+解析版)
展开
这是一份四川省成都市新津区成外学校2023-2024学年高二下学期3月月考数学试题(原卷版+解析版),文件包含精品解析四川省成都市新津区成外学校2023-2024学年高二下学期3月月考数学试题原卷版docx、精品解析四川省成都市新津区成外学校2023-2024学年高二下学期3月月考数学试题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
满分:150分 考试时间:120分钟
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题的四个选项中,只有一项是符合题目要求的.
1. 已知等差数列中,,,则等于( )
A. B. C. D.
2. 已知等比数列的前两项分别为1,-2,则该数列的第4项为( )
A. 4B. -4C. 8D. -8
3. 在数列中,已知,,且(),则( )
A. 13B. 9C. 11D. 7
4. 已知的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且,则( )
A. B.
C. D.
5. 在正项等比数列中,为其前项和,若,,则的值为( )
A. 50B. 70C. 90D. 110
6. “数列和都是等比数列”是“数列是等比数列”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
7. 已知数列的首项,且满足,则中最小的一项是( )
A. B. C. D.
8. 谢尔宾斯基三角形(Sierppinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.先取一个实心正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形,即图中的白色三角形),然后在剩下的每个小三角形中又挖去一个“中心三角形”,用上面的方法可以无限操作下去.操作第1次得到图2,操作第2次得到图3.....,若继续这样操作下去后得到图2024,则从图2024中挖去的白色三角形个数是( )
A. B.
C D.
二、多选题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,错选或不选得0分,少选得部份分.
9. 下面四个数列中,既是无穷数列又是递增数列的是( ).
A 1,,,,…,,…
B ,,,,…,,…
C. ,,,…,,…
D. 1,,,…,,…
10. 古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排的形状,把数分成许多类,如图1,图形中黑色小点个数:1,3,6,10,…称为三角形数,如图2,图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数为数列,正方形数为数列,则( )
A B. C. D.
11. 普林斯顿大学的康威教授于1986年发现了一类有趣的数列并命名为“外观数列”(Lkandsaysequence),该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.则对于外观数列,则( )
A. 若,则从开始出现数字2;
B. 若,则的最后一个数字均为;
C. 可能既是等差数列又是等比数列;
D. 若,则均不包含数字4.
三、填空题:本大题共3个小题,每小题5分,共15分.
12. 在等差数列中,,则________.
13. 数列是等比数列,且前项和为,则实数___________.
14. 习近平总书记在党的二十大报告中提出:坚持以人民为中心发展教育,加快建设高质量教育体系,发展素质教育,促进教育公平,加快义务教育优质均衡发展和城乡一体化.某师范大学学生会为贯彻党的二十大精神,成立“送教下乡志愿者服务社”,分期分批派遣大四学生赴乡村支教.原计划第一批派遣20名学生,以后每批都比上一批增加5人.由于志愿者人数暴涨,服务社临时决定改变派遣计划,具体规则为:把原计划拟派遣的各批人数依次构成的数列记为,在数列的任意相邻两项与之间插入个3,使它们和原数列的项构成一个新的数列.按新数列的各项依次派遣支教学生.记为派遣70批学生后支教学生的总数,则的值为__________.
四、解答题:本大题共6个小题,共计70分.
15. 在等比数列中.
(1)若它的前三项分别为5,-15,45,求;
(2)若an=625,n=4,q=5,求;
(3)若a4=2,a7=8,求an.
16. 已知数列满足,且成等比数列,
(1)求的通项公式;
(2)设数列前项和为,求的最小值及此时的值.
17. 已知正项数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若,的前项和为,求.
18. 王先生今年初向银行申请个人住房贷款80万元购买住房,按复利计算,并从贷款后的次月初开始还贷,分10年还清.银行给王先生提供了两种还贷方式:①等额本金:在还款期内把本金总额等分,每月偿还同等数额的本金和剩余本金在该月所产生的利息;②等额本息:在还款期内,每月偿还同等数额的贷款(包括本金和利息).
(1)若王先生采取等额本金的还贷方式,已知第一个还贷月应还12000元,最后一个还贷月应还5000元,试计算王先生该笔贷款的总利息;
(2)若王先生采取等额本息的还贷方式,贷款月利率为0.3%,银行规定每月还贷额不得超过家庭月收入的一半,已知王先生家庭月收入为 17000元,试判断王先生该笔贷款能否获批(不考虑其他因素).参考数据
19. 随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列,规定为数列的一阶差分数列,其中,规定为数列的二阶差分数列,其中.
(1)数列的通项公式为,试判断数列是否为等差数列,请说明理由?
(2)数列是以1为公差的等差数列,且,对于任意的,都存在,使得,求的值;
(3)各项均为正数的数列的前项和为,且为常数列,对满足,的任意正整数都有,且不等式恒成立,求实数的最大值.
相关试卷
这是一份四川省成都市蓉城联盟2023-2024学年高一下学期入学考试数学试题(原卷版+解析版),文件包含精品解析四川省成都市蓉城联盟2023-2024学年高一下学期入学考试数学试题原卷版docx、精品解析四川省成都市蓉城联盟2023-2024学年高一下学期入学考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份重庆市铜梁中学校2023-2024学年高二下学期开学考试数学试题(原卷版+解析版),文件包含精品解析重庆市铜梁中学校2023-2024学年高二下学期开学考试数学试题原卷版docx、精品解析重庆市铜梁中学校2023-2024学年高二下学期开学考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份重庆部分学校2023-2024学年高二上学期12月月考数学试题(原卷版+含解析),共7页。