【难点解析】湖南省衡阳市中考数学五年真题汇总 卷(Ⅲ)(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
2、下列式子中,与是同类项的是( )
A.abB.C.D.
3、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
4、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
5、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
6、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.19°B.20°C.24°D.25°
7、下列各式中,不是代数式的是( )
A.5ab2B.2x+1=7C.0D.4a﹣b
8、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
9、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A.B.C.D.
10、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,CD⊥AB,垂足为D,CE为△ACD的角平分线. 若CD=8,BC=10,且△BCE的面积为32,则点E到直线AC的距离为________.
2、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
3、已知:直线与直线的图象交点如图所示,则方程组的解为______.
4、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、计算:______.
三、解答题(5小题,每小题10分,共计50分)
1、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
(1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
(2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
(3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
3、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
(1)求直线的解析式;
(2)点为正方形边上一点,若,求的坐标;
(3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
4、计算:(﹣3a2)3+(4a3)2﹣a2•a4.
5、计算:
(1);
(2).
-参考答案-
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
一、单选题
1、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
3、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
4、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
5、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
6、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
7、B
【分析】
根据代数式的定义即可判定.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
A. 5ab2是代数式;
B. 2x+1=7是方程,故错误;
C. 0是代数式;
D. 4a﹣b是代数式;
故选B.
【点睛】
此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
8、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
9、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
10、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
二、填空题
1、2
【解析】
【分析】
过点E作EF⊥AC于点F,根据角平分线的性质定理可得DE=EF,再由勾股定理可得BD=6,然后根据△BCE的面积为32,可得BE=8,即可求解.
【详解】
解:如图,过点E作EF⊥AC于点F,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵CE为△ACD的角平分线.CD⊥AB,
∴DE=EF,
在 中,CD=8,BC=10,
∴ ,
∵△BCE的面积为32,
∴ ,
∴BE=8,
∴EF=DE=BE-BD=2,
即点E到直线AC的距离为2.
故答案为:2
【点睛】
本题主要考查了角平分线的性质定理,勾股定理,熟练掌握角平分线的性质定理,勾股定理是解题的关键.
2、35°##35度
【解析】
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
3、
【解析】
【分析】
根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
∴方程组的解为.
故答案为.
【点睛】
本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
4、13或12-或12+
【解析】
【分析】
根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
【详解】
解:如图,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵,
∴AE=x,
在Rt△ABE中,AE2+BE2=AB2,
即x2+(x)2=132,
解得:x1=5,x2=-5(舍去),
∴BE=5,AE=12,
∴CE=BC-BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,FD2=,
∴CD2=CF-FD2=12-,
CD3=CF+FD2=12+,
综上所述,CD的长度为13、12-或12+.
故答案为:13、12-或12+.
【点睛】
本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
5、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
三、解答题
1、
(1)
(2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
【分析】
(1)先根据绝对值的非负性求出的值,再代入计算即可得;
(2)①根据“路程=速度时间”、结合数轴的性质即可得;
②根据建立方程,解方程即可得.
(1)
解:,
,
解得,
;
(2)
解:①由题意,点所表示的数为,
点所表示的数为,
点所表示的数为;
②,,
由得:,
即或,
解得或,
故当或时,点到点的距离相等.
【点睛】
本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
2、
(1)点E
(2)① 90;② 30或150
(3)N(0,)或(0,- )
【分析】
(1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
(3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
(1)
连接AE,BE
∵AE=4,AB=4,AE⊥AB
∴为等腰直角三角形
∴∠AEB=45°.
故使得线段AB的可视角为45°的可视点是点E.
(2)
①有题意可知,此时AB为⊙P直径
由半径所对的圆周角为90°可知∠AMB为90°
②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
∵BP=AP=4,AB=4
∴为等边三角形
∴∠APB=60°
当点M在圆心一侧由圆周角定理知∠AMB=
当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
(3)
(3)解: ∵过不在同一条直线上的三点确定一个圆,
∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
即:点N的位置为过A、B两点的圆与y轴的交点.
设过A、B两点的圆为⊙M,半径为r.
当r<3时,y轴与⊙M无交点,不符题意舍去.
如图所示:
当r=3时,y轴与⊙M交于一点,此时y轴与⊙M相切,切点即为点N.
当r>3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
∵∠1=∠M1AM+∠AM1M,
∠2=∠M1BM+∠BM1M,
∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
即∠AMB=∠M1AM+∠AM1B+∠M1BM
∴∠AMB>∠AM1B
∴∠ANB>∠AN1B
∵∠AN1B=∠AN2B
∴∠ANB>∠AN2B
∴当y轴与⊙M相切于点N时,∠ANB的值最大.
在Rt△AMC中,AM=r=3,AC=2
∴MC=
∵MN⊥y轴,MC⊥AB,
∴四边形OCMN为矩形.
∴ON=MC=
∴N(0,)
同理,当点N在y轴负半轴时,坐标为(0,- )
综述所述,N(0,)或(0,-).
【点睛】
本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
3、
(1)
(2),,,
(3)或
【分析】
(1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
(1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
(3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
(1)
解:设,代入坐标、得:
,
,
∴直线的解析式;
(2)
解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
∵S△ABP=8,
∴,
∴,
解得,
∴点P(0,4)或(0,-12),
过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
设解析式为,m=2,n=4,
∴,
当y=6时,,
解得,
当y=-6时,,
解得,
,,
过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
设解析式为,
,
当y=-6, ,
解得:,
当x=6, ,
解得,
,
∴,的坐标为或或或,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
∵M1N=M1N′,∠NM1N′=90°,
∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
∴∠HNM1=∠GM1N′,
在△HNM1和△GM1N′中,
,
∴△HNM1≌△GM1N′(AAS),
∴DH=M1G=6,HM1=GN′=6-m,
∵点N′(6-m,m-6)在线段AB上,直线的解析式;
即,
解得,
当点N旋转与点B重合,
∴M2N′=NM2-OB=6-4=2,
,,
,
②在上,
当点N绕点M3旋转与点A重合,
∵M3N=M3N′,∠NM3N′=90°,
∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
∴∠HNM3=∠GM3N′,
在△HNM3和△GM3N′中,
,
∴△HNM3≌△GM3N′(AAS),
∴DH=M3G=6-2=4,HM3=GN′=2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
③在上,
当点N与点F重合绕点M4旋转到AB上N′,
∵M4N=M4N′,∠NM4N′=90°,
∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
∴∠M5NM4=∠GM4N′,
在△M5NM4和△GM4N′中,
,
∴△M5NM3≌△GM3N′(AAS),
∴FM5=M4G=6,M5M4=GN′=-6-m,
∴点N′(-6-m,m+6),
点N′在线段AB上,直线的解析式;
,
解得,
当点N绕点M5旋转点N′与点A重合,
∵M5N=M5N′,∠NM5N′=90°,
∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
∴∠FM5N=∠OM5N′,
在△FM5N和△OM5N′中,
,
∴△FM3N≌△OM5N′(AAS),
∴FM5=M5O=6,FN=ON′=2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,,
④在上,
点N绕点M6旋转点N′与点B重合,MN=MB=2,
,,,
综上:或
【点睛】
本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
4、
【分析】
原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.
【详解】
解:(﹣3a2)3+(4a3)2﹣a2•a4
=
=
=
【点睛】
本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.
5、
(1)
(2)-3
【分析】
(1)直接利用乘法分配律计算得出答案;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(1)
原式==-12-+14=;
(2)
原式=-4-3÷(-3)=-4+1=-3.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
【难点解析】湖南省常德市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析): 这是一份【难点解析】湖南省常德市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析),共23页。试卷主要包含了如图个三角形.,下列等式变形中,不正确的是等内容,欢迎下载使用。
【难点解析】湖南省中考数学真题汇总 卷(Ⅱ)(含答案解析): 这是一份【难点解析】湖南省中考数学真题汇总 卷(Ⅱ)(含答案解析),共27页。试卷主要包含了下列语句中,不正确的是,如图,E,如图,在中,,,,则的度数为,一元二次方程的根为等内容,欢迎下载使用。
【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析): 这是一份【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共34页。试卷主要包含了下列图形是全等图形的是,下列方程中,解为的方程是,如图,等内容,欢迎下载使用。