终身会员
搜索
    上传资料 赚现金

    2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析

    立即下载
    加入资料篮
    2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析第1页
    2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析第2页
    2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析

    展开

    这是一份2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析,共12页。



    【最值模型】梯子问题,指有一条线段的两个端点在坐标轴上滑动,P为AB的中点。
    ◎结论:线段AB的两端在坐标轴上滑动,∠ABC=90°,AB的中点为Q,连接OQ,QC,当O,Q,C三点共线时,OC取得最大值。

    【证明】如图在 Rt△AOB 中,点Q是中点,∴OQ=AB.
    在 Rt△ABC 中,由勾股定理得 CQ= =.
    若OC要取得最大值,则 O,Q,C三点共线,即 OC=OQ+QC,即 OC=AB+。
    1. (2023·河南·开封市第十三中学八年级期中)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
    A.B.C.D.
    2. (2023·全国·八年级专题练习)如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是_____.
    1. (2023·广东·陆河县水唇中学八年级阶段练习)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,
    (1)这个梯子的顶端距地面有多高?
    (2)如果梯子的顶端下滑了4米到,那么梯子的底端在水平方向滑动了几米?
    2. (2023·全国·八年级专题练习)如图所示,线段的两端在坐标轴上滑动,,AB的中点为Q,连接,求证:O,Q,C三点共线时,取得最大值.
    1.(2015·江苏徐州·中考真题)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.
    2.在一次消防演习中,消防员架起一架25米长的云梯,斜靠在一面墙上,梯子底端C离墙20米,如图.
    (1)求这个梯子的顶端A距地面有多高?
    (2)如果消防员接到命令,要求梯子的顶端上升5米(云梯长度不变),那么云梯底部在水平方向应滑动多少米?
    平行四边形
    模型(三十一)——梯子模型
    【最值模型】梯子问题,指有一条线段的两个端点在坐标轴上滑动,P为AB的中点。
    ◎结论:线段AB的两端在坐标轴上滑动,∠ABC=90°,AB的中点为Q,连接OQ,QC,当O,Q,C三点共线时,OC取得最大值。

    【证明】如图在 Rt△AOB 中,点Q是中点,∴OQ=AB.
    在 Rt△ABC 中,由勾股定理得 CQ= =.
    若OC要取得最大值,则 O,Q,C三点共线,即 OC=OQ+QC,即 OC=AB+。
    1. (2023·河南·开封市第十三中学八年级期中)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
    A.B.C.D.
    【答案】B
    【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】取中点,连接、、,


    在中,利用勾股定理可得.
    在中,根据三角形三边关系可知,
    当、、三点共线时,最大为.
    故选.
    【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    2. (2023·全国·八年级专题练习)如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是_____.
    【答案】2+
    【分析】取AC的中点P,连接OP,BP,OB,由直角三角形斜边上的中线等于斜边的一半得到OP的长.在Rt△ABP中,由勾股定理得到BP的长.在△OBP中,根据三角形三边关系定理得到OB≤OP+BP,当O、P、B三点共线时取等号,从而得到OB的最大值.
    【详解】取AC的中点P,连接OP,BP,OB,则OP=AC=2.在Rt△ABP中,BP=.
    在△OBP中,OB≤OP+BP,当O、P、B三点共线时取等号,∴OB的最大值为.
    故答案为.
    【点睛】本题考查了直角三角形斜边上的斜边的一半和勾股定理.解题的关键是构造三角形OPB.
    1. (2023·广东·陆河县水唇中学八年级阶段练习)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,
    (1)这个梯子的顶端距地面有多高?
    (2)如果梯子的顶端下滑了4米到,那么梯子的底端在水平方向滑动了几米?
    【答案】(1)这个梯子的顶端距地面有24米
    (2)梯子的底端在水平方向滑动了8米
    【分析】(1)AC=25米,BC=7米,根据勾股定理即可求得的长;
    (2)由题意得: =20米,根据勾股定理求得,根据即可求解.
    (1)
    解:由题意得:AC=25米,BC=7米,∠ABC=90°,
    (米)
    答:这个梯子的顶端距地面有24米;
    (2)
    由题意得: =20米,
    (米)
    则:=15-7=8(米),
    答:梯子的底端在水平方向滑动了8米.
    【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.
    2. (2023·全国·八年级专题练习)如图所示,线段的两端在坐标轴上滑动,,AB的中点为Q,连接,求证:O,Q,C三点共线时,取得最大值.
    【答案】见解析
    【分析】根据三角形三边关系和勾股定理判定即可;
    【详解】如图.
    在中,,
    ∴.
    在中,由勾股定理得.
    ∵,
    ∴当O,Q,C三点共线,取得最大值,,即;
    【点睛】本题主要考查了三角形三边关系和勾股定理的应用,准确计算是解题的关键.
    1.(2015·江苏徐州·中考真题)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.
    【答案】(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值12cm.
    【分析】(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    【详解】解:(1)①过点C作y轴的垂线,垂足为D,如图1:
    在Rt△AOB中,AB=12,OB=6,则sin∠BAO=
    ∴∠BAO=30°,∠ABO=60°,
    又∵在Rt△ACB中,∠CBA=60°,
    ∴∠CBD=60°,∠BCD=30°,BC=AB·sin30°=6
    ∴BD=BC·sin30°=3,CD=BC·cs30°=3,
    ∴OD=OB+BD=9
    ∴点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:
    AO=12×cs∠BAO=12×cs30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=12
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=122,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:
    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,
    又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,
    如图,即当C'B'旋转到与y轴垂直时.此时|x|=6,OC=,
    故点C与点O的距离的最大值是12cm.
    考点:相似三角形综合题.
    2.在一次消防演习中,消防员架起一架25米长的云梯,斜靠在一面墙上,梯子底端C离墙20米,如图.
    (1)求这个梯子的顶端A距地面有多高?
    (2)如果消防员接到命令,要求梯子的顶端上升5米(云梯长度不变),那么云梯底部在水平方向应滑动多少米?
    【答案】(1)15米;(2)5米.
    【分析】(1)利用勾股定理可得,再代入数计算即可;
    (2)根据题意表示出EA长,再在直角△EDB中利用勾股定理计算出BD长,进而可得CD长.
    【详解】解:(1)由题意得:米,米,
    则(米),
    即这个梯子的顶端距离地面15米,
    (2)由题意得:米,米,
    则(米),
    因为米,
    所以米,
    即云梯的底部在水平方向应滑动5米.
    【点睛】此题主要考查了勾股定理得应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.

    相关试卷

    2024年中考数学几何模型专项复习讲与练 模型27 勾股定理——蚂蚁爬行模型-原卷版+解析:

    这是一份2024年中考数学几何模型专项复习讲与练 模型27 勾股定理——蚂蚁爬行模型-原卷版+解析,共15页。

    2024年中考数学几何模型专项复习讲与练 模型26 勾股定理——378和578模型-原卷版+解析:

    这是一份2024年中考数学几何模型专项复习讲与练 模型26 勾股定理——378和578模型-原卷版+解析,共9页。试卷主要包含了10.等内容,欢迎下载使用。

    中考数学几何模型专项复习 模型38 圆——垂径定理模型-(原卷版+解析):

    这是一份中考数学几何模型专项复习 模型38 圆——垂径定理模型-(原卷版+解析),共14页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学几何模型专项复习讲与练 模型31 平行四边形——梯子模型-原卷版+解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map