- 【讲通练透】高考数学知识大盘点 专题07 三角函数的图象与性质综合(思维导图 知识梳理 方法技巧 易混易错) 试卷 0 次下载
- 【讲通练透】高考数学知识大盘点 专题08 解三角形及其应用(思维导图 知识梳理 方法技巧 易混易错) 试卷 0 次下载
- 【讲通练透】高考数学知识大盘点 专题09 平面向量及其应用(思维导图 知识梳理 方法技巧 易混易错) 试卷 0 次下载
- 【讲通练透】高考数学知识大盘点 专题10 复数及其应用(思维导图 知识梳理 方法技巧 易混易错) 试卷 0 次下载
- 【讲通练透】高考数学知识大盘点 专题11 等差数列与等比数列(思维导图 知识梳理 方法技巧 易混易错) 试卷 0 次下载
【讲通练透】高考数学知识大盘点 专题12 数列通项及数列前n项和求法(思维导图 知识梳理 方法技巧 易混易错)
展开2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题12 数列通项及数列前n项和求法
一、知识速览
二、考点速览
知识点1 数列的递推公式
1、递推公式:如果已知数列{an}的第1项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
2、通项公式和递推公式的异同点
知识点2 数列通项公式的求法
1、观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.
2、公式法
(1)使用范围:若已知数列的前项和与的关系,求数列的通项可用公式构造两式作差求解.
(2)用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达,(要先分和两种情况分别进行运算,然后验证能否统一).
3、累加法:适用于an+1=an+f(n),可变形为an+1-an=f(n)
要点:利用恒等式an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(n≥2,n∈N*)求解
4、累乘法:适用于an+1=f(n)an,可变形为eq \f(an+1,an)=f(n)
要点:利用恒等式an=a1·eq \f(a2,a1)·eq \f(a3,a2)·…·eq \f(an,an-1)(an≠0,n≥2,n∈N*)求解
5、构造法:对于不满足an+1=an+f(n),an+1=f(n)an形式的递推关系,常采用构造法
要点:对所给的递推公式进行变形构造等差数列或等比数列进行求解
类型一:形如(其中均为常数且)型的递推式:
(1)若时,数列{}为等差数列;
(2)若时,数列{}为等比数列;
(3)若且时,数列{}为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:
法一:设,展开移项整理得,与题设比较系数(待定系数法)得,即构成以为首项,以为公比的等比数列.再利用等比数列的通项公式求出的通项整理可得
法二:由得两式相减并整理得即构成以为首项,以为公比的等比数列.求出的通项再转化为累加法便可求出
类型二:形如型的递推式:
(1)当为一次函数类型(即等差数列)时:
法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得
法二:当的公差为时,由递推式得:,两式相减得:,令得:转化为类型Ⅴ㈠求出 ,再用累加法便可求出
(2)当为指数函数类型(即等比数列)时:
法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得
法二:当的公比为时,由递推式得:—①,,两边同时乘以得—②,由①②两式相减得,即,构造等比数列。
法三:递推公式为(其中p,q均为常数)或(其中p,q, r均为常数)时,要先在原递推公式两边同时除以,得:,引入辅助数列(其中),得:,再结合第一种类型。
6、取倒数法:an+1=eq \f(pan,qan+r)(p,q,r是常数),可变形为eq \f(1,an+1)=eq \f(r,p)·eq \f(1,an)+eq \f(q,p)
要点:①若p=r,则eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是等差数列,且公差为eq \f(q,p),可用公式求通项;
②若p≠r,则转化为an+1=san+t型,再利用待定系数法构造新数列求解
7、三项递推构造:适用于形如型的递推式
用待定系数法,化为特殊数列的形式求解.方法为:设,比较系数得,可解得,于是是公比为的等比数列,这样就化归为型.
8、不动点法
(1)定义:方程的根称为函数的不动点.
利用函数的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种求数列通项的方法称为不动点法.
(2)在数列中,已知,且时,(是常数),
= 1 \* GB3 ①当时,数列为等差数列;
= 2 \* GB3 ②当时,数列为常数数列;
= 3 \* GB3 ③当时,数列为等比数列;
= 4 \* GB3 ④当时,称是数列的一阶特征方程,
其根叫做特征方程的特征根,这时数列的通项公式为:;
(3)形如,,(是常数)的二阶递推数列都可用特征根法求得通项,其特征方程为(*).
(1)若方程(*)有二异根、,则可令(、是待定常数);
(2)若方程(*)有二重根,则可令(、是待定常数).
(其中、可利用,求得)
知识点3 几种数列求和的常用方法
1、公式法
(1)等差数列的前n项和,推导方法:倒序相加法.
(2)等比数列的前n项和,推导方法:乘公比,错位相减法.
(3)一些常见的数列的前n项和:
①;
②;
③;
= 4 \* GB3 \* MERGEFORMAT ④
2、分组转化法求和
(1)适用范围:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.
(2)常见类型:
= 1 \* GB3 ①若an=bn±cn,且{bn},{cn}为等差或等比数列;
= 2 \* GB3 ②通项公式为an=eq \b\lc\{(\a\vs4\al\c1(bn,n为奇数,,cn,n为偶数))的数列,其中数列{bn},{cn}是等比数列或等差数列.
3、并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
例如,.
4、倒序相加法:如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.
5、裂项相消法求和:如果一个数列的通项为分式或根式的形式,且能拆成结构相同的两式之差,那么通过累加将一些正、负项相互抵消,只剩下有限的几项,从而求出该数列的前n项和.
6、错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求.
一、已知Sn求an的三个步骤
(1)利用a1=S1求出a1.
(2)当n≥2时,利用an=Sn-Sn-1(n≥2)求出an的表达式.
(3)看a1是否符合n≥2时an的表达式,如果符合,则可以把数列的通项公式合写;否则应写成分段的形式,即an=eq \b\lc\{\rc\ (\a\vs4\al\c1(S1,n=1,,Sn-Sn-1,n≥2.))
根据所求结果的不同要求,将问题向两个不同的方向转化.
(1)利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解.
(2)利用Sn-Sn-1=an(n≥2)转化为只含an,an-1的关系式,再求解.
【典例1】(2023·山东烟台·校联考三模)已知数列的前n项和为,,,则( )
A.20 B.19 C.18 D.17
【典例2】(2023·广东广州·高三校考模拟预测)已知数列的各项均为正数,记数列的前项和,且满足,则下列说法正确的是( )
A. B. C. D.
二、累加法求通项公式
形如型的递推数列(其中是关于的函数)可构造:
【典例1】(2023·全国·高三专题练习)若数列满足:,,则数列的通项公式为 .
【典例2】(2023·全国·高三专题练习)已知数列满足,且,求数列的通项公式.
【典例3】(2023·全国·高三专题练习)若是函数的极值点,数列满足,,则数列的通项公式 .
三、累乘法求通项公式
形如型的递推数列(其中是关于的函数)可构造:
【典例1】(2023秋·江西宜春·高三校考开学考试)若,则通项公式 .
【典例2】(2023·全国·高三专题练习)在数列中,,求.
四、形如的构造法
形如(为常数,且)的递推式,可构造,转化为等比数列求解.也可以与类比式作差,由,构造为等比数列,然后利用叠加法求通项.
【典例1】(2023春·四川泸州·高三校考开学考试)若数列满足,,,则数列的前项和 .
【典例2】(2023·全国·高三对口高考)已知数列中,,且(,且),则数列的通项公式为 .
【典例3】(2023·全国·高三专题练习)已知数列中,且,则数列的通项公式为 .
五、形如的构造法
形如 ,)的递推式,当时,两边同除以转化为关于的等差数列;当时,两边人可以同除以得,转化为.
【典例1】(2023·全国·高三专题练习)已知数列满足,,求数列的通项公式.
【典例2】(2023·全国·高三专题练习)设数列满足:,(),数列满足:.求数列的通项公式.
六、形如的构造法
通过配凑转化为,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得
【典例1】(2023·全国·高三专题练习)已知:,时,,求的通项公式.
【典例2】(2022秋·河北保定·高三校考期中)若,,则 ;
【典例3】(2023·全国·高三专题练习)设数列满足,,则数列的通项公式为 .
七、取倒数法求通项
对于,取倒数得.
当时,数列是等差数列;
当时,令,则,可用待定系数法求解.
【典例1】(2023·全国·高三专题练习)已知数列中,且,则为( )
A. B. C. D.
【典例2】(2023·全国·高三专题练习)在数列中,已知,,则的通项公式为 .
八、裂项相消法求数列的前n项和
1、用裂项法求和的裂项原则及规律
(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.
(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.
【注意】利用裂项相消法求和时,既要注意检验通项公式裂项前后是否等价,又要注意求和时,正负项相消消去了哪些项,保留了哪些项,切不可漏写未被消去的项.
2、裂项相消法中常见的裂项技巧
(1) (2)
(3) (4)
(5) (6)
(7)
【典例1】(2023·江西景德镇·统考三模)在数列中,,,则数列的前项和( )
A. B. C. D.
【典例2】(2023秋·宁夏石嘴山·高三校考阶段练习)数列中,,,则( )
A.97 B.98 C.99 D.100
【典例3】(2023·四川绵阳·校考模拟预测)设数列的前n项和为,.
(1)求证数列为等比数列,并求数列的通项公式.
(2)若数列的前m项和,求m的值,
九、错位相减法求数列的前n项和
1、解题步骤
2、注意解题“3关键”
①要善于识别题目类型,特别是等比数列公比为负数的情形.
②在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
③在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.
3、等差乘等比数列求和,令,可以用错位相减法.
①
②
得:.
整理得:.
【典例1】(2023秋·福建三明·高三三明一中校考阶段练习)设是首项为1的等比数列,数列满足,已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和,求和.
【典例2】(2023秋·河南郑州·高三校考阶段练习)记为数列的前项和,已知.
(1)求的通项公式;
(2)设,求.
【典例3】(2023秋·湖南长沙·高三校考阶段练习)已知数列满足:.
(1)证明数列是等比数列,并求数列的通项公式;
(2)若数列满足,求数列的前项和.
易错点1 由求时忽略对“”检验
点拨:在数列问题中,数列的通项与其前n 项和之间关系如下,在使用这个关系式时,要牢牢记住其分段的特点。当题中给出数列{}的与关系时,先令求出首项,然后令求出通项,最后代入验证。解答此类题常见错误为直接令求出通项,也不对进行检验。
【典例1】(2023·全国·高三专题练习)已知数列的前项和为,且,则( )
A. B. C. D.
【典例2】(2023·全国·高三专题练习)已知数列的前n项和,则 .
【典例3】(2022秋·全国·高三校联考阶段练习)已知数列的前n项和为,且,则数列的前n项和为( )
A. B. C. D.
易错点2 裂项求和剩余项出错
点拨:用裂项相消法求和时,裂项后可以产生连续相互抵消的项,但是要注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,一般来说前面剩余几项后面也剩余几项,若前面剩余的正数项,则后面剩余的是负数项.
【典例1】(2023秋·湖南·高三校联考阶段练习)已知在数列中,,,且为等差数列.
(1)求的通项公式;
(2)记为数列的前n项和,证明:.
【典例2】(2023秋·湖南长沙·高三湖南师大附中校考阶段练习)已知数列的前项和为.
(1)求;
(2)求.
【典例3】(2023·河南·模拟预测)记为等差数列的前n项和,已知,.
(1)求的通项公式;
(2)设,求数列的前n项和.不同点
相同点
通项公式
可根据某项的序号n的值,直接代入求出an
都可确定一个数列,也都可求出数列的任意一项
递推公式
可根据第一项(或前几项)的值,通过一次(或多次)赋值,逐项求出数列的项,直至求出所需的an,也可通过变形转化,直接求出an
【讲通练透】高考数学知识大盘点 专题11 等差数列与等比数列(思维导图 知识梳理 方法技巧 易混易错): 这是一份【讲通练透】高考数学知识大盘点 专题11 等差数列与等比数列(思维导图 知识梳理 方法技巧 易混易错),文件包含专题11等差数列与等比数列原卷版docx、专题11等差数列与等比数列解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
【讲通练透】高考数学知识大盘点 专题08 解三角形及其应用(思维导图 知识梳理 方法技巧 易混易错): 这是一份【讲通练透】高考数学知识大盘点 专题08 解三角形及其应用(思维导图 知识梳理 方法技巧 易混易错),文件包含专题08解三角形及其应用原卷版docx、专题08解三角形及其应用解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
【讲通练透】高考数学知识大盘点 专题06 三角函数的概念与公式(思维导图 知识梳理 方法技巧 易混易错): 这是一份【讲通练透】高考数学知识大盘点 专题06 三角函数的概念与公式(思维导图 知识梳理 方法技巧 易混易错),文件包含专题06三角函数的概念与公式原卷版docx、专题06三角函数的概念与公式解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。