山东省滨州市邹平市梁邹实验初级中学2023-2024学年七年级上学期期末数学试题
展开2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.
3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
第Ⅰ卷(选择题 共36分)
一、选择题:本题共12个小题,每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.
1. 若,a一定是( )
A. 正数B. 非正数C. 负数D. 非负数
【答案】B
【解析】
【分析】本题考查了绝对值的性质.根据可以得到,即,即可得出答案.
【详解】解:∵,
∴,
∴,
即a一定是非正数.
故选:B.
2. 下列说法中正确的是( )
A. 单项式系数是2B. 是三次二项式
C. 的系数是D. 的次数是6
【答案】C您看到的资料都源自我们平台,家威鑫 MXSJ663 低至0.3元/份 【解析】
【分析】本题考查了单项式的概念,熟练掌握单项式的系数与次数的含义是解答本题的关键.单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和,据此逐项分析即可.
【详解】解:A、 单项式的系数是,故A错误;
B、是三次三项式,故B错误;
C、的系数是,故C正确;
D、的次数是3,故D错误.
故选:C.
3. 下列说法正确的是( )
A. 近似数精确到十分位B. 近似数精确到百分位
C. 近似数万精确到十分位D. 近似数7900精确到百位
【答案】A
【解析】
【分析】本题主要考查了近似数的精确度,精确度就是表示一个近似数与准确数的接近程度,一般的来说,一个近似数四舍五入到哪一位,就说这个数的精确度在哪一位.根据定义逐项进行判断即可.
【详解】解:A、近似数,数字0在十分位上,即精确到十分位,原说法正确,符合题意;
B、近似数,数字8在千位上,即精确到千位,原说法错误,不符合题意;
C、近似数万,数字1在千位上,即精确到千位,原说法错误,不符合题意;
D、近似数7900,末尾数字0在个数上,即精确到个位,原说法错误,不符合题意.
故选:A.
4. 若a,b两数在数轴上对应的点如下图所示,则下列结论正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】本题考查了利用数轴比较大小,解题的关键是根据数轴得到,.根据图示知,,然后利用不等式的性质对以下选项进行一一分析、判断即可.
【详解】解:根据数轴可知,,,
A、,故A错误;
B、,故B错误;
C、,故C正确;
D、,故D错误.
故选:C.
5. 已知等式,则下列等式中不一定成立是( )
A. B. C. D.
【答案】D
【解析】
【分析】本题考查等式的基本性质.运用等式的基本性质分别判断即可解答.
【详解】A.等式两边同时加1,得,即.故A选项正确,不符合题意;
B.等式两边同时乘2,得,即,等式两边同时加5,得,即.故B选项正确,不符合题意;
C.等式两边同时乘,得,即.故C选项正确,不符合题意;
D.等式两边同时乘3,得,即.故D选项错误,符合题意.
故选:D
6. 若关于x的方程的解是,则常数m是( )
A. 1B. 2C. 3D. 4
【答案】A
【解析】
【分析】本题考查了解一元一次方程和一元一次方程解,解题的关键是能得出关于m的一元一次方程.把代入方程得出,再求出方程的解即可.
【详解】解:∵方程的解是,
∴,
解得.
故选:A.
7. 请根据下面李老师和张老师的对话,判断张老师买平板电脑的预算是( )
A. 5000元B. 6000元C. 7000元D. 7200元
【答案】B
【解析】
【分析】本题考查一元一次方程的实际应用.设张老师买平板电脑的预算是x元,则电脑售价为元,即可根据题意建立方程求解.
【详解】解∶ 设张老师买平板电脑的预算是x元,则电脑售价为元,
根据题意,得
解得.
故选∶B.
8. 如图所示的长方形(长为20,宽为12)硬纸板,剪掉阴影部分后,将剩余的部分沿虚线折叠,制作成底面为正方形的长方体箱子,则长方体箱子的体积为( )
A. 40B. 56C. 110D. 126
【答案】D
【解析】
【分析】本题主要考查长方体体积的计算方法,熟练根据图求出长、宽、高是解题关键.利用图形求出长方体的宽及长即可.
【详解】解:∵长方体的底面为正方形,由图可知底面周长为12,
∴长方体的底面边长为:,
∴长方体的高为:,
∴长方体箱子的体积为,,
故选:D.
9. 以下解方程组的步骤正确的是( )
A. 代入法消去m,由①得B. 代入法消去n,由②得
C. 加减法消去n,得D. 加减法消去m,得
【答案】A
【解析】
【分析】本题考查的是二元一次方程组的解法,掌握代入消元法与加减消元法解方程组是解本题的关键.利用代入法或加减法逐一分析每个选项即可得到答案.
【详解】解:A、代入法消去m,由①得,故符合题意;
B、代入法消去n,由②得,故不符合题意;
C、加减法消去n,得,故不符合题意;
D、加减法消去m,得,故不符合题意;
故选A.
10. 已知线段,点C在直线上,,点M、N分别是、的中点,则的长度为( )
A. B. 或C. D. 或
【答案】B
【解析】
【分析】本题主要考查了线段中点的定义,线段的和差运算,解题的关键是数形结合,分两种情况进行讨论:当点C在线段的延长线上时,当点C在线段上时,分别画出图形,进行求解即可.
【详解】解:分两种情况讨论:
如图①所示,当点C在线段的延长线上时,
∵,,点M、N分别是、的中点,
∴,,
则;
如图②所示,当点C在线段上时,
∵,,点M、N分别是、的中点,
∴,,
则;
综上可得线段的长度为或.
故选:B.
11. 在解关于x、y的方程组时甲看错①中的a,解得,,乙看错②中的b,解得,,则a和b的正确值应是( )
A. ,B. ,
C. ,D. ,
【答案】D
【解析】
【分析】本题主要考查了二元一次方程组的错解问题,正确理解题意是解题的关键.甲看错了a,则甲的结果满足方程②,乙看错了b,则乙的结果满足方程①,由此建立关于a、b的方程求解即可.
【详解】解:∵解关于x、y的方程组时甲看错①中的a,解得,,乙看错②中的b,解得,,
∴把,代入②,得,
解得:,
把,,代入①,得,
解得:,
∴,
故选:D.
12. 如图,,,,下列判断:
①射线是的角平分线;
②是的补角;
③;
④的余角有和.
其中正确的是( )
A. ①③④B. ①②③C. ①②③④D. ②③④
【答案】C
【解析】
【分析】本题主要考查了余角的性质,余角、补角的定义,角平分线的定义,解题的关键是熟练掌握相关的定义.根据角平分线定义可得射线是的角平分线;根据补角定义可得是的补角;根据余角性质得出;根据余角定义可判断的余角有和.
【详解】解:∵,
∴射线是的角平分线,故①正确;
∵,且的补角是,
∴是的补角,故②正确;
∵,
∴,
∴,
∵,
∴,故③正确;
∵,
∴是的余角,是的余角,
∵,
∴的余角有和,故④正确;
综上分析可知,正确的有①②③④.
故选:C.
第Ⅱ卷(非选择题 共84分)
二、填空题:本大题共6个小题,每小题4分,满分24分.
13. 若,则______.
【答案】
【解析】
【分析】本题考查算术平方根的非负性,熟练掌握非负数的性质是解题的关键.根据非负数之和等于0,则每一个非负数都等于0,可求出a,b的值,再计算即可.
【详解】解∶∵,
∴,
解得,
∴.
故答案为∶ .
14. 2022年,全国教育事业统计结果发布,数据显示,全国各级各类学校共52.93万所,将数据万用科学记数法表示为______.
【答案】
【解析】
【分析】根据科学记数法的表示为的形式,其中,n为整数,求解即可.
【详解】解:万用科学记数法表示为,
故答案为:.
【点睛】此题考查了科学记数法的表示方法,正确记忆科学记数法的表示为的形式是解题关键.
15. 已知某飞机在无风时航速为,那么当风速为时,此飞机顺风飞行比逆风飞行多行驶______.
【答案】##
【解析】
【分析】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.根据题意,可以用代数式表示出飞机顺风飞行速度和逆风飞行速度,然后列出代数式即可得出答案.
【详解】解:由题意可得,飞机顺风飞行速度为和逆风飞行速度,
则飞机顺风飞行比逆风飞行多行驶的路程为:,
故答案为:.
16. 若关于x,y的方程组的解中x与y互为相反数,则______.
【答案】2
【解析】
【分析】本题考查了解二元一次方程组,利用方程组解的情况求参数,熟练掌握和运用解二元一次方程组的方法是解决本题的关键.首先把两方程相加求出,再根据方程组的解互为相反数,即可得的方程,解方程即可求解.
【详解】解:,
,得,
∴,
又x与y互为相反数,
∴,
解得.
故答案为:2.
17. 如图,线段被点C,D分成三部分,M,N分别是,的中点,若,则______.
【答案】
【解析】
【分析】本题主要考查了一元一次方程,中点定义,解题的关键是设,则,,根据中点定义得出,,根据,得出,求出,即可得出答案.
【详解】解:设,则,,
∵M,N分别是,的中点,
∴,,
∵,
∴,
解得:,
,
故答案为:.
18. 某校七年级学生远足活动期间,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒,如果队伍长135米,那么火车长______米.
【答案】280
【解析】
【分析】本题考查了一元一次方程应用,找到相等关系是解题的关键.根据“火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒”列方程求解即可.
【详解】解:设火车长x米,
则:,
解得:,
故答案为:280.
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19. 计算:
(1);
(2).
【答案】(1)
(2)
【解析】
【分析】本题主要考查含乘方的有理数的混合运算,熟练掌握运算法则是解题关键.
(1)先计算有理数的乘方运算,然后化简绝对值,计算乘除法,最后计算加减法即可;
(2)先计算有理数的乘方运算,然后化简绝对值,计算乘除法,最后计算加减法即可.
【小问1详解】
解:
;
【小问2详解】
.
20. 解方程:
(1);
(2).
【答案】(1)
(2)
【解析】
【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去分母,再去括号,然后移项合并同类项,最后未知数系数化为1即可;
(1)先去括号,然后移项合并同类项,最后未知数系数化为1即可;
(2)先去分母,再去括号,然后移项合并同类项,最后未知数系数化为1即可.
【小问1详解】
解:
去括号得:,
移项,合并同类项得:,
系数化为1得:;
【小问2详解】
解:
原方程可变为:,
去分母得:,
去括号得:,
移项合并同类项得:,
系数化为1得:.
21. 解方程组:
(1);
(2).
【答案】(1)
(2)
【解析】
【分析】本题主要考查了解二元一次方程组,解题的关键是熟练掌握解二元一次方程组的方法,准确计算.
(1)用加减消元法解二元一次方程组;
(2)用加减消元法解二元一次方程组.
【小问1详解】
解:,
得:,
解得:,
把代入②得:,
解得:,
∴二元一次方程组的解为:.
【小问2详解】
解:原方程组可变为,
得:,
解得:,
把代入①得:,
解得:,
∴原方程组的解为.
22. 已知,.
(1)化简:(结果用含x,y的式子表示);
(2)当,时,求的值.
【答案】(1)
(2);40
【解析】
【分析】本题主要考查了整式化简求值,解题的关键是熟练掌握去括号法则和合并同类项法则,注意括号前面为负号时,将负号和括号去掉后,括号里每一项的符号要发生改变.
(1)根据去括号,合并同类项法则进行计算即可;
(2)先根据整式加减运算法则进行化简,然后再把数据代入求值即可.
【小问1详解】
解:∵,,
∴
;
【小问2详解】
解:
,
把,代入得:
原式.
23. 某专卖店畅销的甲、乙两款体育器材的进价和售价如下表:
(1)该专卖店用1800元购进了甲、乙器材共50个,求两款器材分别购进多少个?
(2)该专卖店进货时,乙器材的进货量是甲器材的一半,将进货的体育器材全部售出,共获利润2350元.求两款器材分别购进多少个?
【答案】(1)甲器材购进了30个,则乙器材购进了20个
(2)甲器材购进了100个,乙器材购进了50个
【解析】
【分析】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系,列出方程,准确计算.
(1)设甲器材购进了x个,则乙器材购进了个,根据购进了甲、乙器材共用1800元,列出方程,解方程即可;
(2)设乙器材购进了个,甲器材购进了个,根据甲、乙两种器材共获利润2350元,列出方程,解方程即可.
【小问1详解】
解:设甲器材购进了x个,则乙器材购进了个,根据题意得:
,
解得:,
(个),
答:甲器材购进了30个,则乙器材购进了20个.
【小问2详解】
解:设乙器材购进了个,则甲器材购进了个,根据题意得:
,
解得:,
(个),
答:乙器材购进了50个,甲器材购进了100个.
24. 已知内部有三条射线,,.
(1)如图1,若,,平分,平分.求的度数;
(2)如图2,若,,,求的度数.
【答案】(1)
(2)
【解析】
【分析】本题考查了角平分线的性质,以及角度的计算,正确理解角平分线的定义是解题的关键.
(1)首先根据角平分线的定义求得,然后求得的度数,根据角平分线的定义求得,然后根据求解;
(2)根据,,得出,,根据,即可得到答案.
【小问1详解】
解:∵平分,,
∴,
∵,平分,
∴,
∴;
【小问2详解】
解:∵,,
∴,,
∵,
∴
.李老师:张老师,你之前提到的平板电脑买了没?
张老师:还没,它的售价比我的预算多1500元呢!
李老师:这台平板电脑现在正在打7折呢!
张老师:是嘛,太好了,这样比我的预算还要少750元!
类别
甲器材
乙器材
进价/(元/个)
40
30
售价/(元/个)
56
45
山东省滨州市邹平市梁邹实验初级中学2023-2024学年七年级上学期期末数学试题(含答案): 这是一份山东省滨州市邹平市梁邹实验初级中学2023-2024学年七年级上学期期末数学试题(含答案),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
山东省滨州市邹平市梁邹实验初级中学2023-2024学年七年级上学期期末数学试题(): 这是一份山东省滨州市邹平市梁邹实验初级中学2023-2024学年七年级上学期期末数学试题(),共4页。试卷主要包含了如图所示的长方形,以下解方程组的步骤正确的是等内容,欢迎下载使用。
山东省滨州市邹平市梁邹实验初级中学2023—2024学年九年级上学期期末数学试题: 这是一份山东省滨州市邹平市梁邹实验初级中学2023—2024学年九年级上学期期末数学试题,共2页。