|试卷下载
搜索
    上传资料 赚现金
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题33 圆锥曲线中的探索性问题-新高考数学之圆锥曲线专项重难点突破练(新高考专用)(原卷版).docx
    • 解析
      专题33 圆锥曲线中的探索性问题-新高考数学之圆锥曲线专项重难点突破练(新高考专用)(解析版).docx
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)01
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)02
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)03
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)01
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)02
    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)

    展开
    这是一份专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题33圆锥曲线中的探索性问题-新高考数学之圆锥曲线专项重难点突破练新高考专用原卷版docx、专题33圆锥曲线中的探索性问题-新高考数学之圆锥曲线专项重难点突破练新高考专用解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    一、单选题
    1.已知两点及直线l:①;②;③;④,在直线l上存在点P满足的所有直线方程是( )
    A.①②B.①③C.②③D.②④
    2.若椭圆上存在点,满足(为坐标原点),则的离心率的取值范围为( )
    A.B.C.D.
    3.已知双曲线的左顶点为A,若在双曲线的右支上存在两点M,N,使△AMN为等边三角形,且右焦点为△AMN的重心,则该双曲线的离心率为( )
    A.B.2C.D.
    4.已知双曲线的离心率为3,斜率为的直线分别交F的左右两支于A,B两点,直线分别交F的左、右两支于C,D两点,,交于点E,点E恒在直线l上,若直线l的斜率存在,则直线的方程为( )
    A.B.C.D.
    5.已知抛物线:的()焦点为,准线为,过的直线交抛物线于,两点,若在直线上存在一点,使是等边三角形,则直线的斜率为( )
    A.B.C.D.
    6.已知椭圆,若椭圆上存在两点、关于直线对称,则的取值范围是( )
    A.B.C.D.
    7.已知直线和椭圆若对任意实数,直线与椭圆恒有公共点,且存在实数使得直线与椭圆仅有一个公共点,的离心率的取值范围为,则椭圆的长轴长的取值范围是( )
    A.B.C.D.
    8.已知、是双曲线或椭圆的左、右焦点,若椭圆或双曲线上存在点,使得点,且存在,则称此椭圆或双曲线存在“阿圆点”,下列曲线中存在“阿圆点”的是( )
    A.B.C.D.
    二、多选题
    9.已知双曲线:,点为双曲线右支上的一个动点,过点分别作两条渐近线的垂线,垂足分别为,两点,则下列说法正确的是( )
    A.双曲线的离心率为
    B.存在点,使得四边形为正方形
    C.直线,的斜率之积为2
    D.存在点,使得
    10.将曲线和曲线合成曲线.斜率为的直线与交于两点,为线段的中点,则( )
    A.曲线所围成图形的面积小于36
    B.曲线与其对称轴仅有两个交点
    C.存在,使得点的轨迹总在某个椭圆上
    D.存在,使得点的轨迹总在某条直线上
    11.已知拋物线,点均在抛物线上,点,则( )
    A.直线的斜率可能为
    B.线段长度的最小值为
    C.若三点共线,则存在唯一的点,使得点为线段的中点
    D.若三点共线,则存在两个不同的点,使得点为线段的中点
    12.在平面直角坐标系中,由直线上任一点向椭圆作切线,切点分别为、,点在轴的上方,则( )
    A.当点的坐标为时,
    B.当点的坐标为时,直线的斜率为
    C.存在点,使得为钝角
    D.存在点,使得
    三、填空题
    13.已知点,关于坐标原点对称,,过点,且与直线相切,若存在定点,使得当运动时,为定值,则点的坐标为 .
    14.已知抛物线的焦点为,直线,点,点分别是抛物线、直线上的动点,若点在某个位置时,仅存在唯一的点使得,则满足条件的所有的值为 .
    15.不与轴重合的直线经过点,双曲线:上存在两点A,B关于对称,AB中点M的横坐标为,若,则的值为 .
    16.已知抛物线,为抛物线内一点,不经过P点的直线与抛物线相交于A、B两点,直线AP、BP分别交抛物线于C、D两点,若对任意直线l,总存在,使得,成立,则 .
    四、解答题
    17.椭圆的离心率为,过椭圆焦点并且垂直于长轴的弦长度为1.
    (1)求椭圆的标准方程;
    (2)若直线与椭圆相交于,两点,与轴相交于点,若存在实数,使得,求的取值范围.
    18.已知椭圆:的离心率为,其左、右焦点为、,过作不与轴重合的直线交椭圆于、两点,的周长为8.

    (1)求椭圆的方程;
    (2)设线段的垂直平分线交轴于点,是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
    (3)以为圆心4为半径作圆,过作直线交圆于、两点,求四边形的面积的最小值及取得最小值时直线的方程.
    19.已知椭圆的中心为O,左、右焦点分别为,,M为椭圆C上一点,线段与圆相切于该线段的中点N,且的面积为4.
    (1)求椭圆C的方程;
    (2)椭圆C上是否存在三个点A,B,P,使得直线AB过椭圆C的左焦点,且四边形是平行四边形?若存在,求出直线AB的方程;若不存在.请说明理由.
    20.已知为抛物线:的焦点,为坐标原点.过点且斜率为1的直线与抛物线交于,两点,与轴交于点.
    (1)若点在抛物线上,求;
    (2)若的面积为,求实数的值;
    (3)是否存在以为圆心、2为半径的圆,使得过曲线上任意一点作圆的两条切线,与曲线交于另外两点,时,总有直线也与圆相切?若存在,求出此时的值;若不存在,请说明理由.
    21.已知椭圆的左,右顶点分别为,上,下顶点分别为,四边形的内切圆的面积为,其离心率;抛物线的焦点与椭圆的右焦点重合.斜率为k的直线l过抛物线的焦点且与椭圆交于A,B两点,与抛物线交于C,D两点.
    (1)求椭圆及抛物线的方程;
    (2)是否存在常数,使得为一个与k无关的常数?若存在,求出的值;若不存在,请说明理由.
    22.已知椭圆:的离心率为,,为的左、右焦点,若过右焦点的直线与椭圆交于不同的两点,,的周长为8.
    (1)求椭圆的方程;
    (2)已知过点且斜率为的直线与椭圆有两个不同的交点,在轴上是否存在一点,使得是以点为直角顶点的等腰直角三角形?若存在,求出的值及点的坐标;若不存在,说明理由.
    相关试卷

    专题34 圆锥曲线中的综合问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题34 圆锥曲线中的综合问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题34圆锥曲线中的综合问题原卷版docx、专题34圆锥曲线中的综合问题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题32 圆锥曲线中的轨迹问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题32 圆锥曲线中的轨迹问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题32圆锥曲线中的轨迹问题原卷版docx、专题32圆锥曲线中的轨迹问题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    专题31 圆锥曲线中的定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题31 圆锥曲线中的定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题31圆锥曲线中的定直线问题原卷版docx、专题31圆锥曲线中的定直线问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题33 圆锥曲线中的探索性问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map