搜索
    上传资料 赚现金
    英语朗读宝

    备考2024届高考数学一轮复习好题精练第四章三角函数突破:三角函数中有关ω问题的求解

    备考2024届高考数学一轮复习好题精练第四章三角函数突破:三角函数中有关ω问题的求解第1页
    备考2024届高考数学一轮复习好题精练第四章三角函数突破:三角函数中有关ω问题的求解第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备考2024届高考数学一轮复习好题精练第四章三角函数突破:三角函数中有关ω问题的求解

    展开

    这是一份备考2024届高考数学一轮复习好题精练第四章三角函数突破:三角函数中有关ω问题的求解,共4页。
    例1 将函数y=4sin(ωx+π2)(ω>0)的图象分别向左、向右平移π6个单位长度后,所得的两个图象的对称轴重合,则ω的最小值为( A )
    A.3B.2C.4D.6
    解析 将函数y=4sin(ωx+π2)(ω>0)的图象分别向左、向右平移π6个单位长度后,得到y1=4sin[ω(x+π6)+π2],y2=4sin[ω(x-π6)+π2]的图象.由两个图象的对称轴重合,可得
    [ω(x+π6)+π2]-[ω(x-π6)+π2]=ω3π=kπ(k∈Z),所以ω=3k(k∈Z).又ω>0,所以ω的最小值为3.
    方法技巧
    已知三角函数的对称性求ω的思路:根据三角函数的对称性与周期的关系,对称轴与最值的关系,对称中心与零点的关系求ω.
    训练1 [2023四川省名校联考]已知函数f(x)=sin ωx+cs ωx(ω>0),若∃x0∈[-π4,π3],使得f(x)的图象在点(x0,f(x0))处的切线与x轴平行,则ω的最小值是( A )
    A.34B.1C.32D.2
    解析 f(x)=2sin(ωx+π4).f(x)的图象在[-π4,π3]上存在与x轴平行的切线,即
    f(x)的图象在[-π4,π3]上存在对称轴,所以-π4ω+π4≤-π2或π3ω+π4≥π2,解得ω≥3或ω≥34,
    所以ω的最小值为34,故选A.
    命题点2 利用三角函数单调性求ω
    例2 [全国卷Ⅰ]已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=-π4为f(x)的零点,x=π4为y=f(x)图象的对称轴,且f(x)在(π18,5π36)上单调,则ω的最大值为( B )
    A.11B.9C.7D.5
    解析 依题意,有ω·(-π4)+φ=mπ,ω·π4+φ=nπ+π2(m,n∈Z),
    解得ω=2(n-m)+1,φ=2(m+n)+14π.又|φ|≤π2,所以m+n=0或m+n=-1.
    由f(x)在(π18,5π36)上单调,得πω≥5π36-π18,所以0<ω≤12.
    当m+n=0时,ω=4n+1,φ=π4,
    取n=2,得ω=9,f(x)=sin(9x+π4),此时,当x∈(π18,5π36)时,9x+π4∈(3π4,3π2),f(x)单调,符合题意.
    当m+n=-1时,φ=-π4,ω=4n+3,
    取n=2,得ω=11,f(x)=sin(11x-π4),此时,当x∈(π18,5π36)时,11x-π4∈(13π36,23π18),f(x)不单调,不合题意.故ω的最大值为9.
    方法技巧
    已知函数y=Asin(ωx+φ)(A>0,ω>0)在[x1,x2]上单调递增(或递减),求ω的取值范围的步骤:
    (1)根据题意可知区间[x1,x2]的长度不大于该函数最小正周期T的一半,即x2-x1≤12T=πω,求得0<ω≤πx2-x1;
    (2)以单调递增为例,利用[ωx1+φ,ωx2+φ]⊆[-π2+2kπ,π2+2kπ],k∈Z,解得ω的范围;
    (3)结合(1)中求出的ω的范围对k进行赋值,从而求出ω的取值范围.
    训练2 (1)[2023贵州省适应性测试]将函数f(x)=cs ωx(ω>0)的图象向左平移π2个单位长度后得到函数g(x)的图象.若g(x)的图象关于点(π4,0)对称,且g(x)在[π3,5π6]上单调递减,则ω=( B )
    A.13B.23C.1D.2
    解析 由题意可得g(x)=cs(ωx+π2ω),因为g(x)的图象关于点(π4,0)对称,所以3πω4=π2+kπ,k∈Z,即ω=23+43k,k∈Z.令2k1π≤ωx+π2ω≤π+2k1π,k1∈Z,得g(x)的单调递减区间为[2k1πω-π2,π+2k1πω-π2],k1∈Z,因为g(x)在[π3,5π6]上单调递减,所以π3≥2k1πω-π2,5π6≤π+2k1πω-π2,5π6-π3≤12·2πω,k1∈Z,解得12k15≤ω≤34+32k1且0<ω≤2,k1∈Z,所以k1只能取0,得0<ω≤34.又ω=23+43k,k∈Z,所以k只能取0,得ω=23.故选B.
    (2)[2023四川省遂宁市三诊]已知函数f(x)=sin(ωx+π6)+cs ωx(ω>0),f(x1)=0,f(x2)=3,且|x1-x2|的最小值为π,则ω的最小值为 12 .
    解析 f(x)=sin(ωx+π6)+cs ωx=32sin ωx+12cs ωx+cs ωx=32sin ωx+32cs ωx=3sin(ωx+π3),因为f(x1)=0,f(x2)=3,且|x1-x2|的最小值为π,所以函数
    f(x)的最小正周期T的最大值为4π,ω的最小值为12.
    命题点3 利用三角函数最值求ω
    例3 将函数f(x)=sin(2ωx+φ)(ω>0,0<φ<2π)图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的部分图象如图所示,且g(x)在[0,2π]上恰有一个最大值和一个最小值(其中最大值为1,最小值为-1),则ω的取值范围是( C )
    A.(712,1312]B.[712,1312)C.[1112,1712)D.(1112,1712]
    解析 由已知得函数g(x)=sin(ωx+φ)(ω>0,0<φ<2π),由g(x)的图象经过点(0,32)以及点在图象上的位置,得sin φ=32,φ=2π3,∵0≤x≤2π,∴2π3≤ωx+2π3≤2πω+2π3,由g(x)在[0,2π]上恰有一个最大值和一个最小值,∴5π2≤2πω+2π3<7π2,∴1112≤ω<1712.
    方法技巧
    若已知三角函数的最值,则利用三角函数的最值与对称轴或周期的关系,列出关于ω的不等式(组),进而求出ω的取值范围.
    训练3 [2023乌鲁木齐市质监]已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,1),且在区间(π,2π)内不存在最值,则ω的取值范围是( D )
    A.(0,16]B.[14,712]
    C.(0,16]∪[14,712]D.(0,16]∪[13,23]
    解析 因为f(x)=2sin(ωx+φ)的图象过点(0,1),所以f(0)=2sin φ=1,即
    sin φ=12.
    又0<φ<π2,所以φ=π6,于是f(x)=2sin(ωx+π6).
    因为f(x)在区间(π,2π)内不存在最值,所以π≤T2=πω(T为f(x)的最小正周期),得ω≤1.
    当x∈(π,2π)时,ωx+π6∈(πω+π6,2πω+π6),其中π6<πω+π6≤7π6,
    所以有两种情况:①π6<πω+π6<π2,2πω+π6≤π2,解得0<ω≤16;
    ②π2≤πω+π6≤7π6,2πω+π6≤3π2,解得13≤ω≤23.故选D.
    命题点4 利用三角函数零点、极值点求ω
    例4 [2023新高考卷Ⅰ]已知函数f(x)=cs ωx-1(ω>0)在区间[0, 2π]有且仅有3个零点,则ω的取值范围是 [2,3) .
    解析 函数f(x)=cs ωx-1在区间[0,2π]有且仅有3个零点,即cs ωx=1在区间[0,2π]有且仅有3个根,因为ω>0,x∈[0,2π],所以ωx∈[0,2ωπ],则由余弦函数的图象可知,4π≤2ωπ<6π,解得2≤ω<3,即ω的取值范围是[2,3).
    方法技巧
    三角函数图象上两个相邻零点间和两个相邻极值点间的距离均为T2(T为最小正周期),根据三角函数的零点个数或极值点个数,可确定区间长度范围,进而研究ω的取值.
    训练4 (1)[2022全国卷甲]设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( C )
    A.[53,136)B.[53,196)C.(136,83]D.(136,196]
    解析 结合4个选项可设ω>0.由x∈(0,π),得ωx+π3∈(π3,πω+π3).根据函数
    f(x)在区间(0,π)恰有三个极值点和两个零点,知5π2<πω+π3≤3π,得136<ω≤83,即ω的取值范围为136<ω≤83.
    (2)[2022全国卷乙]记函数f(x)=cs(ωx+φ)(ω>0, 0<φ<π)的最小正周期为T.若f(T)=32,x=π9为f(x)的零点,则ω的最小值为 3 .
    解析 因为T=2πω,f(2πω)=32,所以cs(2π+φ)=32,即cs φ=32.又0<φ<π,所以φ=π6.因为x=π9为f(x)的零点,所以π9ω+π6=π2+kπ(k∈Z),解得ω=9k+3(k∈Z).又ω>0,所以当k=0时,ω取得最小值,且最小值为3.

    相关试卷

    备考2024届高考数学一轮复习好题精练第六章平面向量复数突破1平面向量中的综合问题命题点2和向量有关的最值范围问题:

    这是一份备考2024届高考数学一轮复习好题精练第六章平面向量复数突破1平面向量中的综合问题命题点2和向量有关的最值范围问题,共3页。

    备考2024届高考数学一轮复习好题精练第五章数列突破3数列中的创新型问题2:

    这是一份备考2024届高考数学一轮复习好题精练第五章数列突破3数列中的创新型问题2,共3页。试卷主要包含了故选B等内容,欢迎下载使用。

    备考2024届高考数学一轮复习好题精练第五章数列突破2数列中的构造问题2:

    这是一份备考2024届高考数学一轮复习好题精练第五章数列突破2数列中的构造问题2,共4页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map