黑龙江省五常市部分学校2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1. 关于x的一元二次方程x2﹣2x﹣m=0有实根,则m的值可能是( )
A.﹣4B.﹣3C.﹣2D.﹣1
2.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程( )
A.B.
C.D.
3. 如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是( )
A.20°B.30°C.40°D.70°
4.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:
估计出售2000件衬衣,其中次品大约是( )
A.50件B.100件C.150件D.200件
5.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A.a≤﹣1或≤a<B.≤a<
C.a≤或a>D.a≤﹣1或a≥
6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米B.4米C.5米D.6米
7.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为( )
A.B.C.D.
8.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是( )
A.1B.2C.3D.4
9.函数y=3(x﹣2)2+4的图像的顶点坐标是( )
A.(3,4)B.(﹣2,4)C.(2,4)D.(2,﹣4)
10.圆锥的母线长为4,底面半径为2,则它的侧面积为( )
A.4πB.6πC.8πD.16π
11.将下列多项式分解因式,结果中不含因式x﹣1的是( )
A.x2﹣1B.x2+2x+1C.x2﹣2x+1D.x(x﹣2)﹣(x﹣2)
12.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为( )
A.y=﹣1B.y=﹣3C.y=﹣2D.y=﹣2
二、填空题(每题4分,共24分)
13.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.
14.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)
15.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .
16.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为_____.
17.在Rt△ABC中,,,,则的值等于__.
18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正确的是 (写出所有正确结论的序号).
三、解答题(共78分)
19.(8分)女本柔弱,为母则刚,说的是母亲对子女无私的爱,母爱伟大,值此母亲节来临之际,某花店推出一款康乃馨花束,经过近几年的市场调研发现,该花束在母亲节的销售量(束)与销售单价(元)之间满足如图所示的一次函数关系,已知该花束的成本是每束100元.
(1)求出关于的函数关系式(不要求写的取值范围);
(2)设该花束在母亲节盈利为元,写出关于的函数关系式:并求出当售价定为多少元时,利润最大?最大值是多少?
(3)花店开拓新的进货渠道,以降低成本.预计在今后的销售中,母亲节期间该花束的销售量与销售单价仍存在(1)中的关系.若想实现销售单价为200元,且销售利润不低于9900元的销售目标,该花束每束的成本应不超过多少元.
20.(8分).已知关于x的方程的两根为满足:,求实数k的值
21.(8分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.
求:(1)∠C的度数;
(2)A,C两港之间的距离为多少km.
22.(10分)如果是关于x的一元二次方程;
(1)求m的值;
(2)判断此一元二次方程的根的情况,如果有实数根则求出根,如果没有说明理由则可.
23.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.
(1)求证:与相切:
(2)若,,求长;
(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.
24.(10分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.
(1)求∠ABC的度数;
(2)若AB=4,求阴影部分的面积.
25.(12分)如图,正方形ABCD,△ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60°得到AN,连接EN、DM.求证:EN=DM.
26.(12分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、D
5、A
6、A
7、D
8、A
9、C
10、C
11、B
12、A
二、填空题(每题4分,共24分)
13、
14、大
15、.
16、1
17、
18、①②④.
三、解答题(共78分)
19、(1);(2),240,9800;(3)1.
20、或.
21、(1)∠C=60°(2)AC=
22、(1)m=1;(2)有两个不相等的实数根,,.
23、(1)详见解析;(2)4;(3)
24、(1)∠ABC=45°;(2)
25、证明见解析
26、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
抽取件数
50
100
150
200
500
800
1000
合格频数
42
88
141
176
448
720
900
山东省滨州市邹平市部分学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份山东省滨州市邹平市部分学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=3等内容,欢迎下载使用。
黑龙江省五常市山林一中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份黑龙江省五常市山林一中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,抛物线y=等内容,欢迎下载使用。
2023-2024学年黑龙江省哈尔滨市数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年黑龙江省哈尔滨市数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=2+4的顶点坐标是,两三角形的相似比是2,若点A等内容,欢迎下载使用。