莱芜市2023-2024学年九年级数学第一学期期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:
①;
②;
③方程的两个根是;
④方程有一个实根大于;
⑤当时,随增大而增大.
其中结论正确的个数是( )
A.个B.个C.个D.个
2.在中,,,则的值是( )
A.B.C.D.
3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA的值为( )
A.B.C.D.
4.如图,AB是的直径,点C,D是圆上两点,且=28°,则=( )
A.56°B.118°C.124°D.152°
5.如图,已知扇形BOD, DE⊥OB于点E,若ED=OE=2,则阴影部分面积为( )
A.B.C.D.
6.在RtABC中,∠C=90°,如果,那么的值是( )
A.90°B.60°C.45°D.30°
7.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有( )
A.2组
B.3组
C.4组
D.5组
8.下列方程中是一元二次方程的是( )
A.B.C.D.
9.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )
A.10米B.15米C.25米D.30米
10.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )
A.B.C.D.
11.下列数是无理数的是( )
A.B.C.D.
12.关于的一元一次方程的解为,则的值为( )
A.5B.4C.3D.2
二、填空题(每题4分,共24分)
13.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)
14.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.
15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球_____只.
16.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______
17.已知,=________.
18.小华在一次射击训练中的6次成绩(单位:环)分别为:9,8,9,10,8,8,则他这6次成绩的中位数比众数多__________环.
三、解答题(共78分)
19.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;
(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;
(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.
20.(8分)如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间为,问:
(1)当秒时,四边形面积是多少?
(2)当为何值时,点和点距离是?
(3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)
21.(8分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:
(1)求本次共调查了多少学生?
(2)补全条形统计图;
(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.
22.(10分)已知抛物线y=x2+mx+n与x轴交于点A(﹣1,0),B(2,0)两点.
(1)求抛物线的解析式;
(2)当y<0时,直接写出x的取值范围是 .
23.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系。的顶点都在格点上,请解答下列问题:
(1)作出关于原点对称的;
(2)写出点、、的坐标。
24.(10分)某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件.经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件.
(1)如果降价,那么每件要降价多少元才能使销售盈利达到1960元?
(2)如果涨价,那么每件要涨价多少元オ能使销售盈利达到1980元?
25.(12分)在平面直角坐标系xOy中,抛物线交 y轴于点为A,顶点为D,对称轴与x轴交于点H.
(1)求顶点D的坐标(用含m的代数式表示);
(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;
(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.
26.(12分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;
(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、D
4、C
5、B
6、C
7、A
8、C
9、B
10、C
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、-1.
15、1.
16、y=x2-1(答案不唯一).
17、
18、0.5
三、解答题(共78分)
19、(1);(2)△BPC面积的最大值为 ;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)
20、(1)5厘米2;(2)秒或秒;(3)秒或秒或秒或秒.
21、(1)30;(2)作图见解析;(3)240;(4).
22、(1)y=x1﹣x﹣1;(1)﹣1<x<1.
23、(1)详见解析;(2),,
24、(1)每件要降价1元才能使销售盈利达到1960元;(2)每件要涨价1元或3元オ能使销售盈利达到1980元.
25、(1)顶点D(m,1-m);(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.
26、(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、、或.
湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,对于二次函数y=2等内容,欢迎下载使用。
浙江省2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份浙江省2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
山东省莱芜市陈毅中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份山东省莱芜市陈毅中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共9页。试卷主要包含了如果点A,如图,的正切值为,若反比例函数y=图象经过点等内容,欢迎下载使用。