浙江省衢州市初三数2023-2024学年数学九上期末学业质量监测试题含答案
展开这是一份浙江省衢州市初三数2023-2024学年数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足 ,图象与轴相交于两点,与轴相交于点.给出下列结论:
①;②;③若,则;④.
其中正确的个数是( )
A.1B.2C.3D.4
2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是( )
A.25°B.27.5°C.30°D.35°
3.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是( )
A.①③B.①④C.②③D.②④
4.若,则的值是( )
A.1B.2C.3D.4
5.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是( )
A.10B.12C.13D.14
6.如图,A、B、C、D四个点均在O上,∠AOD=40°,弦DC的长等于半径,则∠B的度数为( )
A.40°B.45°C.50°D.55°
7.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )
A.抛一枚硬币,正面朝上的概率
B.掷一枚正六面体的骰子,出现点的概率
C.转动如图所示的转盘,转到数字为奇数的概率
D.从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率
8.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是( )
A.B.C.D.
9.下列各点中,在反比例函数图像上的是( )
A.B.C.D.
10.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则csA的值为( )
A.B.C.D.
11.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为( )
A.OF=CFB.AF=BFC.D.∠DBC=90°
12.一元二次方程x2﹣x﹣2=0的解是( )
A.x1=﹣1,x2=﹣2
B.x1=1,x2=﹣2
C.x1=1,x2=2
D.x1=﹣1,x2=2
二、填空题(每题4分,共24分)
13.代数式a2+a+3的值为7,则代数式2a2+2a-3的值为________.
14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.
15.如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC.若,则等于__________.
16.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.
17.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.
18.如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为__________.
三、解答题(共78分)
19.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)
20.(8分)一个不透明的口袋中装有红、白两种颜色的小球(除颜色外其余都相同),其中红球3个,白球1个.
(1)求任意摸出一球是白球的概率;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用画树状图或列表的方法求两次摸出都是红球的概率.
21.(8分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
22.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).
(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;
(2)△A′B′C′的面积为 个平方单位;
(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、Dn′标出)
23.(10分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.
(1)求证:∠E=∠C;
(2)如图2,如果AE=AB,且BD:DE=2:3,求cs∠ABC的值;
(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.
24.(10分)已知:如图,正方形为边上一点,绕点逆时针旋转后得到.
如果,求的度数;
与的位置关系如何?说明理由.
25.(12分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.
(1)求y与x的函数关系式;
(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
26.(12分)为支持大学生勤工俭学,市政府向某大学生提供了万元的无息贷款用于销售某种自主研发的产品,并约定该学生用经营的利润逐步偿还无息贷款,已知该产品的生产成本为每件元.每天还要支付其他费用元.该产品每天的销售量件与销售单价元关系为.
(1)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润为多少元?注:每天的利润每天的销售利润一每天的支出费用
(2)若销售单价不得低于其生产成本,且销售每件产品的利润率不能超过,则该学生最快用多少天可以还清无息贷款?
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、B
5、B
6、C
7、D
8、A
9、C
10、D
11、A
12、D
二、填空题(每题4分,共24分)
13、3
14、1
15、
16、(2,0), (2,0).
17、(12,6)或(-12,-6)
18、
三、解答题(共78分)
19、见解析.
20、(1);(2)
21、(1)PC是⊙O的切线;(2)
22、(1)详见解析;(2)10;(3)详见解析
23、(1)证明见详解;(2);(3)30°或45°.
24、(1)20°,(2),详见解析
25、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
26、(1)当销售单价定为25元时,日销售利润最大为200元;(2)该生最快用100天可以还清无息贷款.
相关试卷
这是一份2023-2024学年浙江省杭州市建兰中学数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年浙江省杭州市富阳市数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示,在中,,,,则长为,已知二次函数,则下列说法等内容,欢迎下载使用。
这是一份2023-2024学年浙江省嘉兴市数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,二次函数y=ax2+bx+c,方程x2=4的解是,下列叙述,错误的是等内容,欢迎下载使用。