浙江省宁波市镇海区仁爱中学2023-2024学年九年级数学第一学期期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.4的平方根是( )
A.2B.–2C.±2D.±
2.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于( )
A.B.C.3D.2
3.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为( )
A.0B.0或﹣2C.﹣2D.2
4.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).
A.只有一个交点B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧D.无交点
5.如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则∠E的度数是( )
A.65°B.60°C.50°D.40°
6.已知是的反比例函数,下表给出了与的一些值,表中“▲”处的数为( )
A.B.C.D.
7.如图,在⊙O中,弦AB=6,半径OC⊥AB于P,且P为OC的中点,则AC的长是( )
A.2 B.3C.4D.2
8.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为( )
A.B.C.D.
9.抛物线的图像与坐标轴的交点个数是( )
A.无交点B.1个C.2个D.3个
10.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为( )
A.﹣4B.﹣3C.﹣2D.﹣1
11.如图,该几何体的主视图是( )
A.B.C.D.
12.一元二次方程2x2+3x+5=0的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
二、填空题(每题4分,共24分)
13.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.
14.若关于的一元二次方程有实数根,则的值可以为________(写出一个即可).
15.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .
16.已知函数的图象如图所示,若矩形的面积为,则__________.
17.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.
18.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.
三、解答题(共78分)
19.(8分)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.
(1)求证:CD是⊙O的切线;
(2)∠C=45°,⊙O的半径为2,求阴影部分面积.
20.(8分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).
(1)直接写出b,c的值及点D的坐标;
(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;
(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.
21.(8分)如图,矩形中,,以为直径作.
(1)证明:是的切线;
(2)若,连接,求阴影部分的面积.(结果保留)
22.(10分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
23.(10分)如图,在平面直角坐标系中,抛物线 的顶点为,且经过点与轴交于点,连接,,.
(1)求抛物线对应的函数表达式;
(2)点为该抛物线上点与点之间的一动点.
①若,求点的坐标.
②如图②,过点作轴的垂线,垂足为,连接并延长,交于点,连接延长交于点.试说明为定值.
24.(10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
25.(12分)已知二次函数.求证:不论为何实数,此二次函数的图像与轴都有两个不同交点.
26.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出关于原点对称的;
(2)在轴上求作一点,使的周长最小,请画出,并直接写出的坐标.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、C
4、B
5、A
6、D
7、A
8、B
9、B
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、(1,3)
14、5(答案不唯一,只有即可)
15、
16、-6
17、1
18、(1,4).
三、解答题(共78分)
19、(1)见解析;(2)2-
20、(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)
21、(1)见解析;(2)
22、(1)CE=BF,CE⊥BF,理由见解析;(2)
23、(1);(2)①点的坐标为,;②,是定值.
24、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.
25、见解析
26、(1)答案见解析;(2)作图见解析,P坐标为(2,0)
…
…
…
…
▲
浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题(原卷版+解析版): 这是一份浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题(原卷版+解析版),文件包含精品解析浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题原卷版docx、精品解析浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
浙江省宁波市镇海区仁爱中学2023-2024学年八年级数学第一学期期末复习检测模拟试题含答案: 这是一份浙江省宁波市镇海区仁爱中学2023-2024学年八年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了下列运算正确的是,如果,那么的值为,若是完全平方式,则的值是等内容,欢迎下载使用。
浙江省宁波市镇海区镇海区仁爱中学2022-2023学年七年级下学期期末数学试题: 这是一份浙江省宁波市镇海区镇海区仁爱中学2022-2023学年七年级下学期期末数学试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。