江西省南昌市第三中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为( )
A.42°B.48°C.52°D.58°
2.已知反比例函数y=2x﹣1,下列结论中,不正确的是( )
A.点(﹣2,﹣1)在它的图象上
B.y随x的增大而减小
C.图象在第一、三象限
D.若x<0时,y随x的增大而减小
3.下列事件为必然事件的是( )
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
4.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为( )
A.2B.C.D.
5.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是( )
A.k≥B.k>C.k<﹣D.k<
6.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得( )
A.(8﹣) (10﹣)=8×10﹣40B.(8﹣)(10﹣)=8×10+40
C.(8+)(10+)=8×10﹣40D.(8+)(10+)=8×10+40
7.一元二次方程的根的情况是
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法判断
8.双曲线y=在第一、三象限内,则k的取值范围是( )
A.k>0B.k<0C.k>1D.k<1
9.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是( )
A.100(1+x)2=240
B.100(1+x)+100(1+x)2=240
C.100+100(1+x)+100(1+x)2=240
D.100(1﹣x)2=240
10.在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中个球为红球,个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为( )
A.B.C.D.
11.如图,菱形中,过顶点作交对角线于点,已知,则的大小为( )
A.B.C.D.
12.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是( )
A.AD=BDB.∠ACB=∠AOEC.弧AE=弧BED.OD=DE
二、填空题(每题4分,共24分)
13.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.
14.如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则______.若点恰好为的中点时,的长为______.
15.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
16.在平面直角坐标系中,已知点,以原点为位似中心,相似比为.把缩小,则点的对应点的坐标分别是_____,_____.
17.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.
18.二次函数图象的开口向__________.
三、解答题(共78分)
19.(8分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.
(1)求大桥上车流密度为50/辆千米时的车流速度;
(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?
(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.
20.(8分)已知抛物线y=x2+bx﹣3经过点A(1,0),顶点为点M.
(1)求抛物线的表达式及顶点M的坐标;
(2)求∠OAM的正弦值.
21.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)从袋中随机摸出一个球,记录其颜色,然后放回,搅匀,大量重复该实验,发现摸到绿球的频率稳定于0.2,求n的值;
(2)若,小明两次摸球(摸出一球后,不放回,再摸出一球),请用树状图画出小明摸球的所有结果,并求出两次摸出不同颜色球的概率.
22.(10分)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
23.(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
24.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
25.(12分)如图,正方形的边长为9,、分别是、边上的点,且.将绕点逆时针旋转,得到.
(1)求证:
(2)当时,求的长.
26.(12分)期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如表信息:
(1)完成表格中的数据;
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩方差.
从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、B
5、D
6、D
7、A
8、C
9、B
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、1.
14、
15、1
16、 (-1,2)或(1,-2); (-3,-1)或(3,1)
17、k≥﹣1
18、下
三、解答题(共78分)
19、(1)车流速度68千米/小时;(2)应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)车流量y取得最大值是每小时4840辆
20、(1)M的坐标为(﹣1,﹣4);(2).
21、(1);(2)
22、(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为或秒时,使得△BDE与△ABC相似.
23、(1)y=x2;(2)证明见解析;(3)(,3)或(﹣,3).
24、(1)①105°,②见解析;(2)
25、(1)见解析;(2)7.1
26、(1)70,70,85,85;(2)数学.
A
B
C
D
E
平均分
中位数
数学
71
72
69
68
70
英语
88
82
94
85
76
2023-2024学年江西省南昌市第十九中学九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年江西省南昌市第十九中学九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了对于函数y=,下列说法错误的是等内容,欢迎下载使用。
2023-2024学年江西省南昌市数学九年级第一学期期末考试模拟试题含答案: 这是一份2023-2024学年江西省南昌市数学九年级第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
江西南昌市心远中学度2023-2024学年九年级数学第一学期期末综合测试试题含答案: 这是一份江西南昌市心远中学度2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。