![江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案第1页](http://img-preview.51jiaoxi.com/2/3/15293055/0-1706269315842/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案第2页](http://img-preview.51jiaoxi.com/2/3/15293055/0-1706269315887/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案第3页](http://img-preview.51jiaoxi.com/2/3/15293055/0-1706269315910/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案
展开
这是一份江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法,如图,正六边形内接于,连接,如图所示的几何体的左视图是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是( )
A.3B.﹣3C.1D.﹣1
2.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子( )
A.122B.120C.118D.116
3.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为( )
A.2B.0C.0或2D.0或﹣2
4.下列事件中,是随机事件的是( )
A.三角形任意两边之和大于第三边
B.任意选择某一电视频道,它正在播放新闻联播
C.a是实数,|a|≥0
D.在一个装着白球和黑球的袋中摸球,摸出红球
5.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为( )
A.(4,4)B.(3,3)C.(3,1)D.(4,1)
6.如图,在平行四边形中,、相交于点,点是的中点,连接并延长交于点,已知的面积为4,则的面积为( )
A.12B.28C.36D.38
7.下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4B.3C.2D.1
8.如图,正六边形内接于,连接.则的度数是( )
A.B.C.D.
9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(-2,2)B.(-2,4)C.(-2,2)D.(2,2)
10.如图所示的几何体的左视图是( )
A.B.
C.D.
11.在同一坐标系中,一次函数与二次函数的图象可能是( ).
A.B.C.D.
12.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是( )
A.6B.5C.4D.3
二、填空题(每题4分,共24分)
13.如图所示,在菱形OABC中,点B在x轴上,点A的坐标为(6,10),则点C的坐标为_____.
14.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.
15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.
16.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.
17.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .
18.如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0).那么点E的坐标是____.
三、解答题(共78分)
19.(8分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.
(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.
①A型健身器材最多可购买多少套?
②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?
20.(8分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
21.(8分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.
22.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.
(1)求证:△ACB是等腰直角三角形;
(2)求证:OA2=OE•DC:
(3)求tan∠ACD的值.
23.(10分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.
24.(10分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
(1)请计算第几天该商品单价为25元/件?
(2)求网店第几天销售额为792元?
(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?
25.(12分)某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内。小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.
26.(12分)如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.
(1)AD与BC有何等量关系?请说明理由;
(2)当AB=DC时,求证:四边形AEFD是矩形.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、A
4、B
5、A
6、A
7、C
8、C
9、A
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、(6,﹣10)
14、40°或70°或100°.
15、1000
16、
17、
18、(4,0)
三、解答题(共78分)
19、(1)20%;(2)①10;②不能.
20、(1);(2)的值可以为其中一个.
21、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=
22、(1)证明见解析;(2)证明见解析;(3)tan∠ACD=2﹣.
23、证明见解析
24、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.
25、
26、 (1),理由见解析;(2)见解析
摸球总次数
“和为”出现的频数
“和为”出现的频率
销售量n(件)
销售单价m(元/件)
相关试卷
这是一份江苏省大丰区金丰路初级中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市张家港市梁丰初级中学九上数学期末联考试题含答案,共7页。试卷主要包含了抛物线与坐标轴的交点个数为,已知是方程的一个解,则的值是等内容,欢迎下载使用。
这是一份江苏省张家港市梁丰中学2023-2024学年数学九上期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,以下事件为必然事件的是等内容,欢迎下载使用。