江苏省南京市金陵汇文中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.若一元二次方程有两个相等的实数根,则m的值是( )
A.2B.C.D.
2.如图,AB是⊙O的直径,AC,BC分别与⊙O交于点D,E,则下列说法一定正确的是( )
A.连接BD,可知BD是△ABC的中线B.连接AE,可知AE是△ABC的高线
C.连接DE,可知D.连接DE,可知S△CDE:S△ABC=DE:AB
3.为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为( )
A.B.C.D.
4.给出下列一组数:,,,,,其中无理数的个数为( )
A.0B.1C.2D.3
5.中,,,,的值为( )
A.B.C.D.2
6.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )
A.180°﹣2αB.2αC.90°+αD.90°﹣α
7.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )
A.支出20元B.收入20元C.支出80元D.收入80元
8.二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c=m有实数根的条件是( )
A.m≥﹣4B.m≥0C.m≥5D.m≥6
9.点A(﹣3,2)关于x轴的对称点A′的坐标为( )
A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)
10.若反比例函数的图像在第二、四象限,则它的解析式可能是( )
A.B.C.D.
11.下列说法中,不正确的个数是( )
①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点.( )
A.1个B.2个C.3个D.4个
12.如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为( )
A.3mB.4mC.6mD.16m
二、填空题(每题4分,共24分)
13.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:
①∠A始终为60°;
②当∠ABC=45°时,AE=EF;
③当△ABC为锐角三角形时,ED=;
④线段ED的垂直平分线必平分弦BC.
其中正确的结论是_____.(把你认为正确结论的序号都填上)
14.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.
15.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.
16.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.
17.方程(x﹣1)(x+2)=0的解是______.
18.方程(x-3)2=4的解是
三、解答题(共78分)
19.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时, ;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
20.(8分)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=6时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.
21.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)
22.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;
(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
23.(10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.
(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
24.(10分)如图,已知直线y=﹣x+4与反比例函数的图象相交于点A(﹣2,a),并且与x轴相交于点B.
(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积.
25.(12分)如图,已知中,, 点是边上一点,且
求证:;
求证:.
26.(12分)商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件,设每件商品降价元(为正整数).据此规律,请回答:
(1)商场日销轡量增加 件,每件商品盈利 元(用含的代数式表示);
(2)每件商品降价多少元时,商场日盈利可达到元;
(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、C
5、C
6、D
7、C
8、A
9、D
10、A
11、C
12、B
二、填空题(每题4分,共24分)
13、①②③④
14、(答案不唯一)
15、74
16、
17、1、﹣1
18、1或1
三、解答题(共78分)
19、(1)①,②.(2)无变化;理由参见解析.(3),.
20、(1)线段OD的长为1.
(2)存在,DE保持不变.DE=.
21、17.3米.
22、(1)15人;(2)补图见解析.(3).
23、(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.
24、(1)a=6;(2) ;(3)1
25、(1)详见解析;(2)详见解析
26、(1)2x;(50-x);(2)每件商品降价1元,商场可日盈利2400元;(3)商场日盈利的最大值为2450元.
2023-2024学年江苏省南京市鼓楼区金陵汇文中学数学九年级第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年江苏省南京市鼓楼区金陵汇文中学数学九年级第一学期期末教学质量检测试题含答案,共8页。
江苏省南京市金陵汇文中学2023-2024学年数学八上期末质量跟踪监视试题含答案: 这是一份江苏省南京市金陵汇文中学2023-2024学年数学八上期末质量跟踪监视试题含答案,共6页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2023-2024学年江苏省南京市金陵中学八上数学期末联考模拟试题含答案: 这是一份2023-2024学年江苏省南京市金陵中学八上数学期末联考模拟试题含答案,共7页。试卷主要包含了下列计算正确的是,下列各数,如图,设等内容,欢迎下载使用。