弥勒市朋普中学2023-2024学年九上数学期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,在△ABC中,点D、B分别是AB、AC的中点,则下列结论:①BC=3DE;②=;③=;④=;其中正确的有( )
A.4个B.3个C.2个D.1个
2.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于( )
A.50°B.55°C.65°D.70°
3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )
A.CM=DMB.C.∠ACD=∠ADCD.OM=MD
4.方程x2=2x的解是( )
A.2B.0C.2或0D.﹣2或0
5.在平面直角坐标系xOy中,经过点(sin45°,cs30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )
A.相交B.相切
C.相离D.以上三者都有可能
6.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为( )
A.-3B.-4C.3D.7
7.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为( ).
A.-1B.2C.-1或2D.-1或2或1
8.在半径为3cm的⊙O中,若弦AB=3,则弦AB所对的圆周角的度数为( )
A.30°B.45°C.30°或150°D.45°或135°
9.若点 A、B、C 都在二次函数的图象上,则的大小关系为( )
A.B.C.D.
10.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是( )
A.-8B.-10C.-16D.-18
11.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①②B.②③C.①③D.①④
12.解方程最适当的方法是( )
A.直接开平方法B.配方法C.因式分解法D.公式法
二、填空题(每题4分,共24分)
13.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.
14.如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是__________,MN平移到PQ扫过的阴影部分的面积是__________.
15.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.
16.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE// BC,EF//AB,且AD:DB=3:5,那么CF:CB 等于__________.
17.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_______________。
18.在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.
三、解答题(共78分)
19.(8分)已知抛物线y=x2+bx+c的图像过A(﹣1,0)、B(3,0)两点.求抛物线的解析式和顶点坐标.
20.(8分)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t为何值时,?
(2)求四边形BQPC的面积S与t的函数关系式;
(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;
(4)若DE经过点C,试求t的值.
21.(8分)计算题:
(1)计算:sin45°+cs230°•tan60°﹣tan45°;
(2)已知是锐角,,求.
22.(10分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。请解决下列问题:
(1)直接写出:购买这种产品 ________件时,销售单价恰好为2600元;
(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;
(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
23.(10分)用配方法解一元二次方程
24.(10分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据,,)
25.(12分)如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点 C′是点C关于直线DE的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.
(1)VD ,C 坐标为 ;
(2)图2中,m= ,n= ,k= .
(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).
26.(12分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:
(1)下表是与的几组对应值
请直接写出:=, m=, n=;
(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;
(3)请直接写出函数的图像性质:;(写出一条即可)
(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、C
5、A
6、A
7、D
8、D
9、D
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、257
14、 (1,5) 16
15、
16、5:8
17、4元或6元
18、x≥4且x≠1
三、解答题(共78分)
19、y=x2-2x-3,顶点坐标为(1,-4).
20、(1);(2);(3)1或2;(4).
21、(1);(2)1﹣
22、(1)90;(2);(3)公司应将最低销售单价调整为2725元.
23、,
24、GH的长为10m
25、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时, S=t2;②当点C′在CB的延长线上, S=−t2+t−;③当点E在x轴负半轴, S=t2−4t+1.
26、(1)1,1,0 (2)作图见解析 (3)必过点.(答案不唯一) (4)
...
-2
-1
0
1
2
3
...
...
-8
-3
0
m
n
1
3
...
云南弥勒市2023-2024学年数学九上期末检测模拟试题含答案: 这是一份云南弥勒市2023-2024学年数学九上期末检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,在中,=90〫,,则的值是等内容,欢迎下载使用。
2023-2024学年云南省弥勒市朋普中学数学九年级第一学期期末经典试题含答案: 这是一份2023-2024学年云南省弥勒市朋普中学数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年弥勒市朋普中学数学八年级第一学期期末联考试题含答案: 这是一份2023-2024学年弥勒市朋普中学数学八年级第一学期期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在下列命题中,真命题是等内容,欢迎下载使用。