吉林省吉林市舒兰市2023-2024学年数学九上期末调研模拟试题含答案
展开这是一份吉林省吉林市舒兰市2023-2024学年数学九上期末调研模拟试题含答案,共7页。试卷主要包含了已知,《孙子算经》中有一道题,在平面直角坐标系中,点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )
A.12个B.14个C.18个D.28个
2.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为( )
A.B.C.D.
3.已知:m=+1,n=﹣1,则=( )
A.±3B.﹣3C.3D.
4.如图,为的直径,,为上的两点,且为的中点,若,则的度数为( )
A.B.C.D.
5.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,根据题意列方程组正确的是( )
A.B.C.D.
6.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为( )
A.50cmB.50cmC.100cmD.80cm
7.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是( )
A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)
8.用一个平面去截一个圆锥,截面的形状不可能是( )
A.圆B.矩形C.椭圆D.三角形
9.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( )
A.B.C.D.
10.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )
A.B.C.D.
11.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为( )
A.B.C.D.
12.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是( )
A.①②③④B.①②③C.①②④D.②③④
二、填空题(每题4分,共24分)
13.如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
14.若,那么△ABC的形状是___.
15.已知两个数的差等于2,积等于15,则这两个数中较大的是 .
16.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.
17.若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.
18.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.
三、解答题(共78分)
19.(8分)解一元二次方程:x2﹣5x+6=1.
20.(8分)(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是 ;
(问题探究)如图2所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km;
(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.
①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)
②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.
请问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.
21.(8分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
(1)①点B的坐标是 ;
②当点Q与点A重合时,点P的坐标为 ;
(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.
22.(10分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上.当,时,如图2,连杆端点离桌面的高度是多少?
23.(10分)如图,是的直径,是圆上的两点,且,.
(1)求的度数;
(2)求的度数.
24.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= ;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
25.(12分)九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.
(1)男生当选班长的概率是 ;
(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.
26.(12分)如图,在△ABC中,边BC与⊙A相切于点D,∠BAD=∠CAD.求证:AB=AC.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、C
4、C
5、A
6、A
7、D
8、B
9、C
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、y=0.2(x-2)+2
14、等边三角形
15、5
16、相交
17、30º
18、1
三、解答题(共78分)
19、x1=2,x2=2
20、 [问题发现] 15;[问题探究] ;[拓展应用] ①出口E设在距直线OB的7.1米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为米.
21、(1)①(6,),②(3,);(2)
22、
23、(1);(2).
24、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.
25、(1)(2)
26、见解析.
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
相关试卷
这是一份吉林省吉林市舒兰市2023-2024学年九年级上学期期末数学试题,共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份42,吉林省吉林市舒兰市2023-2024学年九年级上学期期末数学试题,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省吉林市舒兰市2023-2024学年九年级上学期期末数学试题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

