云南师大附中呈贡校区2023-2024学年数学九上期末教学质量检测试题含答案
展开
这是一份云南师大附中呈贡校区2023-2024学年数学九上期末教学质量检测试题含答案,共9页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则( )
A.(50﹣2x)(30﹣x)=178×6
B.30×50﹣2×30x﹣50x=178×6
C.(30﹣2x)(50﹣x)=178
D.(50﹣2x)(30﹣x)=178
2.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值( )
A.B.C.D.
3.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A.30°B.40°C.45°D.50°
4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cs∠ABC=,则BD的长为( )
A.2B.4C.2D.4
5.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是( )
A.B.C.D.
6.,,,π 四个实数,任取一个数是无理数的概率为( )
A.B.C.D.1
7.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是( )
A.B.C.D.
8.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①abc>1;
②b2﹣4ac>1;
③9a﹣3b+c=1;
④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;
⑤5a﹣2b+c<1.
其中正确的个数有( )
A.2B.3C.4D.5
9.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A.cmB.3cmC.4cmD.4cm
10.从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )
A.5B.8C.10D.15
11.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为( )
A.4B.2C.4D.2
12.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是( )
A.2B.C.D.
二、填空题(每题4分,共24分)
13.如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD上的一动点,连接PC,过点P作PE⊥PC交AB于点E.以CE为直径作⊙O,当点P从点A移动到点D时,对应点O也随之运动,则点O运动的路程长度为_____.
14.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.
15. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
16.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′ 的度数是______________.
17.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是_________.
18.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.
三、解答题(共78分)
19.(8分)化简求值:,其中a=2cs30°+tan45°.
20.(8分)已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的关系式;
(2)若,两点都在该函数的图象上,试比较与的大小.
21.(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.
(1)求证:;
(2)若,,求的长.
22.(10分)如图,在中,, 点是边上一点,连接,以为边作等边.
如图1,若求等边的边长;
如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.
①求证:;
②如图3,将沿翻折得,连接,直接写出的最小值.
23.(10分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。
(1)求李老师第一次摸出的乒乓球代表男生的概率;
(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.
24.(10分)若二次函数y=ax2+bx﹣2的图象与x轴交于点A(4,0),与y轴交于点B,且过点C (3,﹣2).
(1)求二次函数表达式;
(2)若点P为抛物线上第一象限内的点,且S△PBA=5,求点P的坐标;
(3)在AB下方的抛物线上是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.
25.(12分)某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.
(1)甲分到A组的概率为 ;
(2)求甲、乙恰好分到同一组的概率.
26.(12分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、B
4、D
5、C
6、B
7、B
8、B
9、C
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、.
14、
15、57.5
16、105°
17、(3.76,0)
18、1.
三、解答题(共78分)
19、,
20、(1);(2)当时,;当时,;当时,.
21、(1)见解析;(2)
22、(1);(2)证明见解析;(3)最小值为
23、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.
24、(1);(2);(3)存在,点M到y轴的距离为
25、(1);(2)
26、参加旅游的人数40人.
相关试卷
这是一份2023-2024学年云南师大附中呈贡校区九年级数学第一学期期末达标测试试题含答案,共8页。试卷主要包含了如图,AG等内容,欢迎下载使用。
这是一份2023-2024学年云南师大附中呈贡校区八年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年云南师大附中呈贡校区八年级(上)期末数学试卷,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。