2023-2024学年淮南市重点中学九上数学期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在中,,,若,则的长为( )
A.B.C.D.
2.用配方法解方程,下列变形正确的是( )
A.B.C.D.
3.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )
A.∠ABP=∠CB.∠APB=∠ABC
C.D.
4.关于2,6,1,10,6这组数据,下列说法正确的是( )
A.这组数据的平均数是6B.这组数据的中位数是1
C.这组数据的众数是6D.这组数据的方差是10.2
5.已知(,),下列变形错误的是( )
A.B.C.D.
6.把分式中的、都扩大倍,则分式的值( )
A.扩大倍B.扩大倍C.不变D.缩小倍
7.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为( )
A.0.5B.1.5C.D.1
8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )
A.平均数B.方差C.中位数D.极差
9.小兵身高1.4m,他的影长是2.1m,若此时学校旗杆的影长是12m,那么旗杆的高度( )
A.4.5mB.6mC.7.2mD.8m
10.数据60,70,40,30这四个数的平均数是( )
A.40B.50C.60D.70
11.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
12.已知的图象如图,则和的图象为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.小华在一次射击训练中的6次成绩(单位:环)分别为:9,8,9,10,8,8,则他这6次成绩的中位数比众数多__________环.
14.若点在反比例函数的图象上,则的大小关系是_____________.
15.若<2,化简_____________
16.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).
17.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
18.有一块长方形的土地,宽为120m,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区,乙建商场,丙地开辟成面积为3200m2的公园.若设这块长方形的土地长为xm.那么根据题意列出的方程是_____.(将答案写成ax2+bx+c=0(a≠0)的形式)
三、解答题(共78分)
19.(8分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.
(1)写出y与x之间的函数表达式;
(1)当x=1时,求四边形APQC的面积.
20.(8分)欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中礼包是芭比娃娃,和礼包都是智能对话机器人.这些礼包用外表一样的包装盒装着,看不到里面的礼物.
(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?
(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.
21.(8分)已知抛物线的顶点坐标是(1,-4),且经过点(0,-3),求与该抛物线相应的二次函数表达式.
22.(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD= cm,压柄与托板的长度相等.
(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.
(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)
23.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)
24.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G
(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.
25.(12分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
26.(12分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:
直接写出与的函数关系式,并注明自变量的取值范围;
设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;
由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、D
4、C
5、B
6、C
7、D
8、C
9、D
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、0.5
14、y1>y3>y1
15、2-x.
16、4.
17、等
18、x2﹣361x+32111=1
三、解答题(共78分)
19、(1)y=4x1﹣14x+144;(1)111mm1.
20、(1);(2)
21、y=x2-2 x-3
22、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.
23、(1)见解析;(2)169π(cm2).
24、(1)证明见解析(2)1
25、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.
26、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.
x
30
32
34
36
y
40
36
32
28
齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
安徽省淮南市潘集区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份安徽省淮南市潘集区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列方程属于一元二次方程的是,下列说法正确的是等内容,欢迎下载使用。