2023-2024学年安徽省滁州全椒县联考数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
2.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是( )
A.1B.2C.1.5D.3
3.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于( )
A.2B.3C.D.
4.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5.如图,二次函数的图象过点,下列说法:①;②;③若是抛物线上的两点,则;④当时,.其中正确的个数为( )
A.4B.3C.2D.1
6.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是( )
A.100°B.110°C.120°D.130°
7.已知关于x的二次方程有两个实数根,则k的取值范围是( )
A.B.且C.D.且
8.下列四个点中,在反比例函数的图象上的是( )
A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)
9.将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为( )
A.B.
C.D.
10.下列图形中,不是中心对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.
12.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.
13.方程组的解是_____.
14.若=,则的值为______.
15.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______
16.在Rt△ABC中,∠C=90°,如果AC=9,csA=,那么AB=________.
17.如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0).那么点E的坐标是____.
18.因式分解:= .
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点 的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.
⑴求这条抛物线对应的函数表达式;
⑵当点在第一象限的抛物线上时,求与之间的函数关系式;
⑶在⑵的条件下,当时,求的值.
20.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
21.(6分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.
(1)求点A和B的坐标;
(2)连结OA,OB,求△OAB的面积.
22.(8分)如图,在平行四边形中,过点作垂足为.连接为线段上一点,且.求证:.
23.(8分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
24.(8分)在平面直角坐标系中,存在抛物线以及两点和.
(1)求该抛物线的顶点坐标;
(2)若该抛物线经过点,求此抛物线的表达式;
(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.
25.(10分)如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.
(1)求直线AC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
26.(10分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.
(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)
(2)若AP=2,CD=8,求⊙O的半径.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、A
4、C
5、B
6、C
7、B
8、A
9、B
10、B
二、填空题(每小题3分,共24分)
11、20
12、110°.
13、
14、4
15、1°
16、27
17、(4,0)
18、.
三、解答题(共66分)
19、(1);(2)当时, ,当时, ;(3)或.
20、(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).
21、(1)A(1,1) ,B(-3,9);(2)6.
22、详见解析
23、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.
24、(1)(0,2);(2);(3)m=2或.
25、(1)直线的解析式为;(2)当的长度最大时,点的坐标为.
26、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.
2023-2024学年安徽省淮北市五校联考九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年安徽省淮北市五校联考九上数学期末质量跟踪监视模拟试题含答案,共8页。
安徽省淮南实验中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份安徽省淮南实验中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,平移抛物线y=﹣等内容,欢迎下载使用。
2023-2024学年安徽省舒城县联考数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年安徽省舒城县联考数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中,是相似形的是,反比例函数,下列说法不正确的是,下列各数中,属于无理数的是等内容,欢迎下载使用。