2023-2024学年安徽省淮北市五校联考九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是( )
A.m≠1B.m=1C.m≠0D.m≥1
2.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( )
A.2B.3C.4D.5
3.下列二次函数的开口方向一定向上的是( )
A.y=-3x2-1B.y=-x2+1C.y=x2+3D.y=-x2-5
4.如图,是由绕点顺时针旋转后得到的图形,若点恰好落在上,且的度数为( )
A.B.C.D.
5.如图,在△ABC中,点D、E分别在边BA、CA的延长线上, =2,那么下列条件中能判断DE∥BC的是( )
A.B.C.D.
6.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是( )
A.B.
C.或D.或
7.一元二次方程4x2﹣3x+=0根的情况是( )
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
8.如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为( )
A.B.C.2D.
9.已知关于的一元二次方程的一个根是2,则的值为( )
A.-1B.1C.-2D.2
10.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是( )
A.B.
C.D.
11.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )
A.
B.
C.
D.
12.下列根式是最简二次根式的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,某景区想在一个长,宽的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为,如果横向小桥的宽为,那么可列出关于的方程为__________.(方程不用整理)
14.若某人沿坡度i=3∶4的斜坡前进10m,则他比原来的位置升高了_________m.
15.如图,为的直径,则_______________________.
16.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.
17.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.
18.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
三、解答题(共78分)
19.(8分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.
20.(8分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.
(1)求抛物线的解析式.
(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
注:二次函数(≠0)的对称轴是直线=.
21.(8分)在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.
(1)求m的值;
(2)求△ABO的面积;
22.(10分)已知关于x的一元二次方程x2+(2m+1)x+m2+m=1.求证:无论m为何值,方程总有两个不相等的实数根.
23.(10分)在△ABC中,∠ACB=90°,AB=20,BC=1.
(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ= .
(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;
(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.
24.(10分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.
(1)用含的代数式表示线段的长.
(2)当点与点重合时,求的值.
(3)设与重叠部分图形的面积为,求与之间的函数关系式.
25.(12分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.
(1)求该企业从2014年到2016年利润的年平均增长率;
(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
26.(12分)如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.
(1)如图1,当PB=3时,求PA的长以及⊙O的半径;
(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;
(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、C
4、C
5、D
6、D
7、D
8、A
9、D
10、B
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、1.
15、60°
16、1
17、,
18、15.6
三、解答题(共78分)
19、 (1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)
20、(2)(2)P(,)
21、(1)m=4,(1)△ABO的面积为1.
22、见解析
23、(1)2;(2)见解析;(3)存在,QP的值为或8或.
24、 (1);(2)t=1;(3).
25、(1)20%;(2)能.
26、(1)PA的长为,⊙O的半径为;(2)见解析;(3)⊙O的半径为2或或
湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列图形,下列运算中,计算结果正确的是,近视镜镜片的焦距y等内容,欢迎下载使用。
江苏省扬州邗江区五校联考2023-2024学年数学九上期末质量跟踪监视模拟试题含答案: 这是一份江苏省扬州邗江区五校联考2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共7页。
2023-2024学年湖北省武汉江夏区五校联考数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年湖北省武汉江夏区五校联考数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。