2023-2024学年江苏省泰兴市济川中学九年级数学第一学期期末复习检测试题含答案
展开
这是一份2023-2024学年江苏省泰兴市济川中学九年级数学第一学期期末复习检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法不正确的是,方程的解是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5
2.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3B.2C.D.1
3.若一次函数 y=ax+b(a≠0)的图像与 x 轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为( )
A.直线 x=1B.直线 x=-1C.直线 x=2D.直线 x=-2
4.已知k1<0<k2,则函数y=k1x和的图象大致是( )
A.B.C.D.
5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )
A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)
C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)
6.下列说法不正确的是( )
A.一组邻边相等的矩形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.有一组邻边相等、一个角是直角的四边形是正方形
7.方程的解是( )
A.B.C.D.
8.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每亩产量的两组数据,其方差分别为,,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
9.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为( )
A.105°B.115°C.125°D.135°
10.四边形为平行四边形,点在的延长线上,连接交于点,则下列结论正确的是( )
A.B.C.D.
11.在圆内接四边形中,与的比为,则的度数为( )
A.B.C.D.
12.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则
A.5B.7C.9D.11
二、填空题(每题4分,共24分)
13.如图,中,点在边上.若,,,则的长为______.
14.设、是方程的两个实数根,则的值为_____.
15.如图,在中,,且把分成面积相等的两部分.若,则的长为________.
16.如图, 圆的直径垂直于弦,垂足是,,,的长为__________.
17.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.
18.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则csα=_____.
三、解答题(共78分)
19.(8分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=1.
(1)已知x=2是方程的一个根,求m的值;
(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.
20.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.
(1)求∠CFA度数;
(2)求证:AD∥BC.
21.(8分)已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求抛物线的解析式;
(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;
(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.
22.(10分)如图,一次函数y1=mx+n与反比例函数y2= (x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.
(1)求一次函数与反比例函数的解析式;
(2)观察图象,当x>0时,直接写出y1>y2的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
23.(10分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.
(1)求证:直线是⊙的切线;
(2)若,求⊙的半径.
24.(10分)一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;
(2)甲、乙两人用这四个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
25.(12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.
(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
26.(12分)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,
(1)求A、B两点的坐标;
(2)若△DBH与△BEH相似,试求抛物线的解析式.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、A
4、D
5、D
6、D
7、B
8、B
9、D
10、D
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、-1
15、
16、
17、
18、
三、解答题(共78分)
19、(1)m=1或m=1; (2)当或
20、(1)75°(2)见解析
21、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+);(2)MD2=n2﹣n+3;点M的坐标为( ,)或(,).
22、(1)y1=﹣x+5, y2=;(2)2<x<1;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.
23、(1)见解析;(2).
24、 (1);(2) 这个游戏对甲、乙两人公平,理由见解析.
25、(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.
26、 (1) ;(2) 见解析.
相关试卷
这是一份2023-2024学年江苏省泰州市泰兴市济川中学九年级(上)月考数学试卷(10月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年泰兴市济川中学数学九上期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,必然发生的事件是,关于抛物线,下列说法错误的是,已知抛物线y=ax2+bx+c,若,则等内容,欢迎下载使用。
这是一份江苏省泰兴市济川中学2023-2024学年八上数学期末学业质量监测试题含答案,共8页。试卷主要包含了下列命题中的真命题是,下列运算正确的是等内容,欢迎下载使用。