2023-2024学年江苏省无锡市滨湖区数学九上期末教学质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.在中,∠C=90°,∠A=2∠B,则的值是( )
A.B.C.D.
2.关于抛物线y=x2﹣4x+4,下列说法错误的是( )
A.开口向上
B.与x轴有两个交点
C.对称轴是直线线x=2
D.当x>2时,y随x的增大而增大
3.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个( )
A.45B.48C.50D.55
4.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是( )
A.
B.
C.
D.
5.图中的两个梯形成中心对称,点P的对称点是( )
A.点AB.点BC.点CD.点D
6.﹣的绝对值为( )
A.﹣2B.﹣C.D.1
7.下列各选项的事件中,发生的可能性大小相等的是( )
A.小明去某路口,碰到红灯,黄灯和绿灯
B.掷一枚图钉,落地后钉尖“朝上”和“朝下”
C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上
D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”
8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2πB.4πC.5πD.6π
10.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为( )
A.B.C.D.
11.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有( )
A.4个B.3个C.1个D.1个
12.如图所示,在中,,若,,则的值为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
14.数据1、2、3、2、4的众数是______.
15.已知抛物线,当时,的取值范围是______________
16.如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若△DEF的面积为1,则△ABC的面积为_____.
17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_____.(结果保留π).
18.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.
三、解答题(共78分)
19.(8分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.
求演员弹跳离地面的最大高度;
已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
20.(8分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
21.(8分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.
(1)在这次问卷调查中,共抽查了_________名同学;
(2)补全条形统计图;
(3)估计该校名同学中喜爱足球活动的人数;
(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
22.(10分)如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.
(1)求∠BAE的度数;
(2)连结BD,延长AE交BD于点F.
①求证:DF=EF;
②直接用等式表示线段AB,CF,EF的数量关系.
23.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
24.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
25.(12分)一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.
(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;
(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.
26.(12分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.
(1)如图1,若点M在线段BD上.
① 依据题意补全图1;
② 求∠MCE的度数.
(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系 .
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、A
4、C
5、C
6、C
7、D
8、B
9、B
10、A
11、B
12、B
二、填空题(每题4分,共24分)
13、 B
14、1
15、1≤y<9
16、
17、2π.
18、
三、解答题(共78分)
19、 (1) ;(2)能成功;理由见解析.
20、(1)证明见解析;(2)
21、(1)50;(2)见解析;(3)1020名;(4)树状图见解析,
22、 (1) 75°;(2)①见解析②
23、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
24、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
25、(1);(2)组成的两位数是奇数的概率为.
26、(1)①见解析;②∠MCE=∠F=45°;(2)
等待时的频数间
乘车等待时间
地铁站
5≤t≤10
10<t≤15
15<t≤20
20<t≤25
25<t≤30
合计
A
50
50
152
148
100
500
B
45
215
167
43
30
500
江苏省无锡市辅仁中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份江苏省无锡市辅仁中学2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知下列命题等内容,欢迎下载使用。
江苏省无锡市东湖塘中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份江苏省无锡市东湖塘中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,将两个圆形纸片等内容,欢迎下载使用。
江苏省无锡市滨湖区2023-2024学年数学九上期末统考试题含答案: 这是一份江苏省无锡市滨湖区2023-2024学年数学九上期末统考试题含答案,共7页。