2023-2024学年山东省泰安市名校数学九年级第一学期期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.用配方法解方程x2-4x+3=0时,原方程应变形为( )
A.(x+1)2=1B.(x-1)2=1C.(x+2)2=1D.(x-2)2=1
2.方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
3.关于x的方程ax2+bx+c=0是一元二次方程,则满足( )
A.a≠0B.a>0C.a≥0D.全体实数
4.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A.B.
C.D.
5.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( )
A.2或-2B.2C.-2D.0
6.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是( )
A.B.C.D.
7.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )
A.B.C.D.
8.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PDB.PBC.PED.PC
9.由不能推出的比例式是( )
A.B.
C.D.
10.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为( )个.
A.1B.2C.3D.4
11.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为( )
A.-8B.-6C.-4D.-2
12.如图,在⊙中,半径垂直弦于,点在⊙上,,则半径等于( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
14.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.
15.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长 线于点,若,,则线段的长是________.
16.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸岀一个,则两次都摸到黄球的概率为__________.
17.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.
18.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.
三、解答题(共78分)
19.(8分)校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少米?
20.(8分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
21.(8分)已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.
(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;
(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.
22.(10分) (1)计算:(2119-)1-(cs61°)-2+-tan45°;
(2)解方程:2x2-4x+1=1.
23.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E,
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.
24.(10分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cs37°≈0.80,tan37°≈0.75)
25.(12分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t>0),△BPQ的面积为S(cm2).
(1)t=2秒时,则点P到AB的距离是 cm,S= cm2;
(2)t为何值时,PQ⊥AB;
(3)t为何值时,△BPQ是以BP为底边的等腰三角形;
(4)求S与t之间的函数关系式,并求S的最大值.
26.(12分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.
(1)已知抛物线.
① 在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是 ;
② 如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;
(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、A
4、C
5、B
6、D
7、A
8、C
9、C
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、(0,0)
14、1.
15、5
16、
17、
18、或
三、解答题(共78分)
19、2m
20、(1)A(﹣,0),B(,0);抛物线解析式y=x2+x﹣;(2)12;(3)(0,),(0,﹣)
21、(Ⅰ)∠ABC=64°,∠ODC=71°;(Ⅱ)∠ACD=19°.
22、(1)-2;(2),
23、(1)见解析(2)2:1
24、(1)10米;(2)11.4米
25、(1),;(2);(3);(4)S=﹣t2+3t,S的最大值为.
26、(1)①A,C.②;(2)或.
山东省泰安市新城实验中学2023-2024学年数学九年级第一学期期末统考模拟试题含答案: 这是一份山东省泰安市新城实验中学2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共8页。试卷主要包含了某排球队名场上队员的身高,图1是一个地铁站入口的双翼闸机,下列图象能表示y是x的函数的是等内容,欢迎下载使用。
2023-2024学年山东省泰安市泰前中学九上数学期末复习检测模拟试题含答案: 这是一份2023-2024学年山东省泰安市泰前中学九上数学期末复习检测模拟试题含答案,共8页。
2023-2024学年山东省淄博市名校九年级数学第一学期期末检测模拟试题含答案: 这是一份2023-2024学年山东省淄博市名校九年级数学第一学期期末检测模拟试题含答案,共9页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。