2023-2024学年四川省内江市资中学县九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是
A.B.C.D.和
2.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=( )
A.20°B.25°C.30°D.35°
3.如图,在边长为的小正方形组成的网格中,的三个顶点在格点上,若点是的中点,则的值为( )
A.B.C.D.
4.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=0
5.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是( )
A.B.
C.D.
6.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.B.C.D.
7.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是( )
A.±2B.2C.±2.5D.2.5
8.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是( )
A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)
9.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是( )
A.k<1且k≠0B.k≤1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0
10.已知一元二次方程,,则的值为( )
A.B.C.D.
11.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是( )
A.∠B=∠DB.∠C=∠EC.D.
12.下列方程中,没有实数根的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,菱形ABCD的三个顶点在二次函数的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为____________.
14.等腰三角形底边所对的外接圆的圆心角为140°,则其顶角的度数为______.
15.二次函数y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,则关于x的一元二次方程﹣x2+bx+c=0的根为_____.
16.是方程的解,则的值__________.
17.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.
18.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.
三、解答题(共78分)
19.(8分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.
(1)求证:DC=BD
(2)求证:DE为⊙O的切线
20.(8分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.
21.(8分) [阅读理解]对于任意正实数、,
∵,∴,
∴(只有当时,).
即当时,取值最小值,且最小值为.
根据上述内容,回答下列问题:
问题1:若,当______时,有最小值为______;
问题2:若函数,则当______时,函数有最小值为______.
22.(10分)四川是闻名天下的“熊猫之乡”,每年到大熊猫基地游玩的游客络绎不绝,大学生小张加入创业项目,项目帮助她在基地附近租店卖创意熊猫纪念品.已知某款熊猫纪念物成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件.
(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)若每天该熊猫纪念物的销售量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?
(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余利润不低于3600元,试确定该熊猫纪念物销售单价的范围.
23.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
24.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为轴,喷水池中心为原点建立平面直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
25.(12分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.
(1)求证:AD是⊙O的切线;
(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.
26.(12分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、C
4、C
5、B
6、A
7、D
8、C
9、B
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、(2, ).
14、70°或110°.
15、x1=1,x2=﹣1.
16、
17、
18、
三、解答题(共78分)
19、(1)证明见解析;(2)证明见解析.
20、薛老师所带班级有56人.
21、(1)2,4;(2)4,1
22、(1)为y=﹣10x+2;(2)3元时每天获取的利润最大利润是4元;(3)45≤x≤1.
23、(1)(2,﹣2);
(2)(1,0);
(3)1.
24、(1);(2)王师傅必须在7米以内.
25、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.
26、5.5米
四川省邛崃市2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份四川省邛崃市2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,二次函数下列说法正确的是等内容,欢迎下载使用。
四川省成都市西川中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份四川省成都市西川中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。