


莆田市重点中学2023-2024学年数学九上期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是( )
A.30B.30πC.60πD.48π
2.二次函数y=x2﹣2x+2的顶点坐标是( )
A.(1,1)B.(2,2)C.(1,2)D.(1,3)
3.己知点都在反比例函数的图象上,则( )
A.B.C.D.
4.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是( )
A.y=﹣x2﹣5 B.y=﹣x2+1 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣2
5.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
6.如图,,若,则的长是( )
A.4B.6C.8D.10
7.用配方法解一元二次方程,配方后的方程是( )
A.B.C.D.
8.如图,反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,与边BC交于点D,连接AD,则△ADB的面积为( )
A.12B.16C.20D.24
9.对于二次函数,下列说法正确的是( )
A.图象开口方向向下;B.图象与y轴的交点坐标是(0,-3);
C.图象的顶点坐标为(1,-3);D.抛物线在x>-1的部分是上升的.
10.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是( )
A.(2,0)B.(-3,0)C.(-2,0)D.(3,0)
二、填空题(每小题3分,共24分)
11.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.
12.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________
13.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.
14.如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
15.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.
16.点在线段上,且.设,则__________.
17.若一个正六边形的周长为24,则该正六边形的面积为 ▲ .
18.阅读下列材料,我们知道,因此将的分子分母同时乘以“”,分母就变成了4,即,从而可以达到对根式化简的目的,根据上述阅读材料解决问题:若,则代数式m5+2m4﹣2017m3+2016的值是_____.
三、解答题(共66分)
19.(10分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.
(1)这次问卷调查的学生总人数为 ,人数 ;
(2)扇形统计图中, ,“其他”对应的扇形的圆心角的度数为 度;
(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?
20.(6分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
21.(6分)如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.
(1)求点P的坐标及直线AC的解析式;
(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;
(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.
22.(8分)已知a=,b=,求.
23.(8分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;
(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.
24.(8分)如图,在和中,,点为射线,的交点.
(1)问题提出:如图1,若,.
①与的数量关系为________;
②的度数为________.
(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.
25.(10分)先化简,再求值:,其中x为方程的根.
26.(10分)如图⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm. 点M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s .连接MN,设运动时间为t(s)﹙0<t<4﹚,解答下列问题:
⑴设△AMN的面积为S,求S与t之间的函数关系式,并求出S的最大值;
⑵如图⑵,连接MC,将△MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;
⑶当t的值为 ,△AMN是等腰三角形.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、C
5、B
6、C
7、C
8、A
9、D
10、D
二、填空题(每小题3分,共24分)
11、.
12、甲
13、1
14、1
15、
16、
17、
18、2016
三、解答题(共66分)
19、(1)300,90;(2)10,18;(3)120人
20、(1)9,9(2)(3)甲
21、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值为﹣3或,理由见解析
22、1.
23、(1)60;(2)12,图见解析;(3)450
24、(1);;(2)成立,理由见解析
25、1
26、(1), ;(2)t=;(3)或或
最喜欢的锻炼项目
人数
打球
120
跑步
游泳
跳绳
30
其他
第1次
第2次
第3次
第4次
第5次
第6次
甲
10
9
8
8
10
9
乙
10
10
8
10
7
9
福建省莆田市城厢区砺成中学2023-2024学年九上数学期末监测模拟试题含答案: 这是一份福建省莆田市城厢区砺成中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了如图,已知等内容,欢迎下载使用。
福建省莆田市南门中学2023-2024学年九上数学期末监测试题含答案: 这是一份福建省莆田市南门中学2023-2024学年九上数学期末监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年莆田市重点中学九上数学期末统考试题含答案: 这是一份2023-2024学年莆田市重点中学九上数学期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,关于抛物线y=-3,如果,那么锐角A的度数是,下列函数中,是反比例函数的是,某人沿着坡度为1等内容,欢迎下载使用。