湖北省武汉市求新联盟联考2023-2024学年数学九上期末预测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,的半径为5,的内接于,若,则的值为( )
A.B.C.D.
2.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为( )
A.B.C.D.
3.如图,抛物线y=﹣(x+m)2+5交x轴于点A,B,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为( )
A.B.C.3D.
4.反比例函数y=﹣的图象在( )
A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限
5.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为( )
A.B.C.D.
6.如图,已知正五边形内接于,连结相交于点,则的度数是( )
A.B.C.D.
7.计算( )
A.B.C.D.
8.关于的一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.不能确定
9.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( )
A.438(1+x)2=389B.389(1+x)2=438
C.389(1+2x)=438D.438(1+2x)=389
10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 °B.75°C.85°D.90°
二、填空题(每小题3分,共24分)
11.已知反比例函数的图象经过点,则这个函数的表达式为__________.
12.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____
13.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.
14.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).
15.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.
16.若△ABC∽△A′B′C′,且=,△ABC的周长为12 cm,则△A′B′C′的周长为_______cm.
17.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.
18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .
三、解答题(共66分)
19.(10分)关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)若满足,求的值.
20.(6分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.
(1)在平面直角坐标系中,若点.
①在的点中,是线段的“限距点”的是 ;
②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.
(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围
21.(6分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:
(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)
①;②;③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?
22.(8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.
(1)求证:DA=DE;
(2)若AB=6,CD=4,求图中阴影部分的面积.
23.(8分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.
(1)求证:AC是∠DAB的平分线;
(2)若AB=10,AC=4,求AE的长.
24.(8分)如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.
(1)求一次函数和反比例函数的表达式;
(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.
25.(10分)解方程:
(1)x2﹣2x﹣1=0
(2)2(x﹣3)2=x2﹣9
26.(10分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.
(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;
②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;
(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?
(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、B
4、C
5、B
6、C
7、B
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、
12、70°或120°
13、
14、15π
15、
16、16cm
17、120°
18、.
三、解答题(共66分)
19、(1);(2)a=-1
20、(1)①E;②;(2).
21、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2
22、(1)证明见解析;(2)
23、(1)详见解析;(2)1.
24、(1).;(2)的坐标为或.
25、 (1),;(2)x1=3,x2=9.
26、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元
速度v(千米/小时)
流量q(辆/小时)
湖北省武汉市求新联盟联考2023-2024学年九上数学期末经典模拟试题含答案: 这是一份湖北省武汉市求新联盟联考2023-2024学年九上数学期末经典模拟试题含答案,共9页。
湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列四对图形中,是相似图形的是,函数y=3等内容,欢迎下载使用。
湖北省武汉市求新联盟联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案: 这是一份湖北省武汉市求新联盟联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,角平分线的作法等内容,欢迎下载使用。