湖北省武汉市求新联盟联考2023-2024学年九上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为( )
A.110°B.140°C.35°D.130°
2.如图,是的直径,,是圆周上的点,且,则图中阴影部分的面积为( )
A.B.C.D.
3.下列方程中是关于的一元二次方程的是( )
A.B.C.,D.
4.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是( )
A.B.C.1D.2
5.如图,在⊙O中,弦BC // OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为( ).
A.30°B.40°
C.50°D.60°
6.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是( )
A.B.C.D.
7.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
A.2B.3C.4D.5
8.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为( )
A.B.
C.D.
9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于( )
A.B.C.3D.2
10.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2B.x<-2或0<x<2
C.-2<x<0或0<x<2D.-2<x<0或x>2
二、填空题(每小题3分,共24分)
11.sin245°+ cs60°=____________.
12.函数y=–1的自变量x的取值范围是 .
13.当时,二次函数有最大值4,则实数的值为________.
14.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.
15.如图,A是反比例函数图象上的一点,点B、D在轴正半轴上,是关于点D的位似图形,且与的位似比是1:3,的面积为1,则的值为____.
16.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.
17.如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为________.
18.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元. 设平均每次下调的百分率为,则可列方程为____________________.
三、解答题(共66分)
19.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.
20.(6分)如图,在Rt△ABC中,∠ACB=90°.在斜边AB上取一点D,使CD=CB,圆心在AC上的⊙O过A、D两点,交AC于点E.
(1)求证:CD是⊙O的切线;
(2)若,且AE=2,求CE的长.
21.(6分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
(1)如图1,求证:;
(2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
(3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
22.(8分)解方程:x2-5 = 4x.
23.(8分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.
(1)求圆形滚轮的半径的长;
(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).
24.(8分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1) 求证:CD是⊙O的切线;
(2) 若⊙O的直径为4,AD=3,试求∠BAC的度数.
25.(10分)如图,于,以直径作,交于点恰有,连接.
(1)如图1,求证:;
(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;
(3)在(2)的基础上,若,求的长.
26.(10分)例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).
解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.1,x2≈2.1.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.
根据你对上面教材内容的阅读与理解,解决下列问题:
(1)利用函数图象确定不等式x2﹣4x+3<0的解集是 ;利用函数图象确定方程x2﹣4x+3=的解是 .
(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.
①请在网格内画出函数y=|x2﹣4x+3|的图象;
②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为 ;
③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、C
5、B
6、B
7、B
8、B
9、B
10、D
二、填空题(每小题3分,共24分)
11、1
12、x≥1
13、2或
14、.
15、8
16、
17、
18、
三、解答题(共66分)
19、该县投入教育经费的年平均增长率为20%
20、(1)详见解析;(2)CE=.
21、 (1)见解析;(2)见解析;(3)见解析.
22、x1=5,x2=﹣1.
23、(1);(2)
24、(1)证明见解析;(2)30°.
25、(1)证明见解析;(2);理由见解析;(3).
26、 (2) 2<x<3,x=4;(2) ①见解析,②0<m<2,③m=0.8
湖北省武汉市求新联盟联考2023-2024学年数学九上期末预测试题含答案: 这是一份湖北省武汉市求新联盟联考2023-2024学年数学九上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算,关于的一元二次方程的根的情况是等内容,欢迎下载使用。
湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列四对图形中,是相似图形的是,函数y=3等内容,欢迎下载使用。
湖北省武汉市求新联盟联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案: 这是一份湖北省武汉市求新联盟联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,角平分线的作法等内容,欢迎下载使用。