2023-2024学年湖北省武汉市蔡甸区八校联盟九上数学期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列调查方式合适的是( )
A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式
B.了解炮弹的杀伤力,采用全面调查的方式
C.对中央台“新闻联播”收视率的调查,采用全面调查的方式
D.对石家庄市食品合格情况的调查,采用抽样调查的方式
2.已知关于x的一元二次方程有两个相等的实数根,则a的值是( )
A.4B.﹣4C.1D.﹣1
3.在同一平面直角坐标系中,函数与的图象可能是( )
A.B.
C.D.
4.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为( )
A.B.C.D.
5.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是
A.相交B.相切C.相离D.无法确定
6.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心
C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°
7.如图相交于点,下列比例式错误的是( )
A.B.C.D.
8.下列命题正确的是( )
A.对角线相等四边形是矩形
B.相似三角形的面积比等于相似比
C.在反比例函数图像上,随的增大而增大
D.若一个斜坡的坡度为,则该斜坡的坡角为
9.如右图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在格点上,则的值为( )
A.B.C.D.
10.如图,在中,,则的值为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cs31°=0.857,tan31°=0.601)
12.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.
13.将抛物线C1:y=x2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C2,则抛物线C2的解析式为:_____.
14.如图,过上一点作的切线,与直径的延长线交于点,若,则的度数为__________.
15.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.
16.设分别为一元二次方程的两个实数根,则______.
17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.
18.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.
三、解答题(共66分)
19.(10分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.
(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;
(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;
(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.
20.(6分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.
(1)求反比例函数的关系式及其自变量的取值范围;
(2)求整条滑道的水平距离;
(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.
21.(6分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
22.(8分)关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:
(1)方程总有两个实数根;
(2)如果方程的两根相等,求此时方程的根.
23.(8分)如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5cm,求四边形ABCD的面积.
24.(8分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
25.(10分)定义:将函数C1的图象绕点P(m,0)旋转180°,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数。例如:当m=1时,函数y=(x-3)2+1关于点P(1,0)的相关函数为y=-(x+1)2-1.
(1)当m=0时,
①一次函数y=-x+7关于点P的相关函数为_______;
②点A(5,-6)在二次函数y=ax2-2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;
(2)函数y=(x-2)2+6关于点P的相关函数是y= -(x-10)2-6,则m=_______
(3)当m-1≤x≤m+2时,函数y=x2-6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.
26.(10分)已知,二次三项式﹣x2+2x+1.
(1)关于x的一元二次方程﹣x2+2x+1=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;
(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+1的图象与线段AB只有一个交点,求n的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、D
4、C
5、A
6、D
7、D
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、6.2
12、2或或.
13、y=(x+1)2﹣1
14、26°
15、2
16、1
17、1.
18、5π
三、解答题(共66分)
19、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.
20、(1),;(2)7m;(3).
21、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)
22、(1)见解析;(1)x1=x1=1.
23、(1)点A为旋转中心;(1)旋转了90°或170°;(3)四边形ABCD的面积为15cm1.
24、(1) (2)点P的坐标;(3)M
25、(1)①;②;(2)6;(3)的值为或.
26、(1)m=7;(2)n≤﹣2或1≤n<2.
湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列四对图形中,是相似图形的是,函数y=3等内容,欢迎下载使用。
湖北省武汉市蔡甸区2023-2024学年数学八上期末经典试题含答案: 这是一份湖北省武汉市蔡甸区2023-2024学年数学八上期末经典试题含答案,共7页。试卷主要包含了关于一次函数,下列结论正确的是,不等式1+x≥2﹣3x的解是等内容,欢迎下载使用。
2023-2024学年湖北省武汉市蔡甸区八校联盟数学八年级第一学期期末调研模拟试题含答案: 这是一份2023-2024学年湖北省武汉市蔡甸区八校联盟数学八年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了若分式的值为零,则的值为,如果点P,运用乘法公式计算2的结果是等内容,欢迎下载使用。