浙江省绍兴市新昌县2023-2024学年九上数学期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是( )
A.图象开口向上 B.图象的对称轴是直线x=1
C.图象有最低点 D.图象的顶点坐标为(﹣1,2)
2.已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?( )
A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω
3.在中,是边上的点,,则的长为( )
A.B.C.D.
4.下列是电视台的台标,属于中心对称图形的是( )
A.B.C.D.
5.如图,是的直径,四边形内接于,若,则的周长为( )
A.B.C.D.
6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0); ②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有( )
A.1个B.2个C.3个D.4个
7.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A.B.C.D.
8.如图,从半径为5的⊙O外一点P引圆的两条切线PA,PB(A,B为切点),若∠APB=60°,则四边形OAPB的周长等于( )
A.30B.40C.D.
9.数据4,3,5,3,6,3,4的众数和中位数是( )
A.3,4B.3,5C.4,3D.4,5
10.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.
(1)请补充完整下面的成绩统计分析表:
(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.
12.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.
13.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.
14.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.
15.___________.
16.已知关于x的一元二次方程有两个实数根,,若,满足,则m的值为_____________
17.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.
18.如图,AB为⊙O的直径,C,D 是⊙O上两点,若∠ABC=50°,则∠D的度数为______.
三、解答题(共66分)
19.(10分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数.
(1)任意转动转盘一次,求指针落在奇数区域的概率;
(2)若游戏规则如下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢.请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平.
20.(6分)李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)
(2)估算袋中白球的个数为________.
(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.
21.(6分)已知线段AC
(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);
(2)若AC=8,BD=6,求菱形的边长.
22.(8分)解方程:
(1)3(2x+1)2=108
(2)3x(x-1)=2-2x
(3)x2-6x+9=(5-2x)2
(4)x(2x-4)=5-8x
23.(8分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2 =____;
同种操作,如图3,S阴影3=1--()2-()3 =__________;
如图4,S阴影4=1--()2-()3-()4 =___________;
……若同种地操作n次,则S阴影n=1--()2-()3-…-()n =_________.
于是归纳得到:+()2+()3+…+()n =_________.
(理论推导)
(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.
解:设S=1+2+22+23+24+…+22015+22016,①
将①×2得:2S=2+22+23+24+…+22016+22017,②
由②-①得:2S—S=22017—1,即=22017-1.
即1+2+22+23+24+…+22015+22016=22017-1
根据上述材料,试求出+()2+()3+…+()n 的表达式,写出推导过程.
(规律应用)
(3)比较+++…… __________1(填“”、“”或“=”)
24.(8分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
25.(10分)如图,∆ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.
(1)求证:∆ABM∽∆ECA.
(2)当CM=4OM时,求BM的长.
(3)当CM=kOM时,设∆ADE的面积为, ∆MCD的面积为,求的值(用含k的代数式表示).
26.(10分)在等腰直角三角形中,,,点在斜边上(),作,且,连接,如图(1).
(1)求证:;
(2)延长至点,使得,与交于点.如图(2).
①求证:;
②求证:.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、C
4、C
5、C
6、C
7、A
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、(1),1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.
12、1
13、200
14、点B或点E或线段BE的中点.
15、
16、4
17、
18、40°.
三、解答题(共66分)
19、(1);(2)游戏规则公平,理由详见解析
20、表格内数据:0.26,0.25,0.25 (1)0.25;(2)1;(1).
21、(1)详见解析;(2)1.
22、(1)x1=,x2=;(2)x1=1,x2=;(3)x1 =,x2=2;(4)x1=, x2=
23、(1);;;()n;1 - ()n ;(2)+()2+()3+…+()n = 1-()n,推导过程见解析;(3)=
24、(1)(4,3);(2)y=x+x;(3)
25、 (1)证明见解析;(2);(3)
26、(1)见解析;(1)①见解析;②见解析
x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
平均分
方差
众数
中位数
甲组
1
9
乙组
1
1
摸球的次数n
100
150
200
500
800
1000
摸到黑球的次数m
23
31
60
130
203
251
摸到黑球的频率
0.23
0.21
0.30
_____
_____
_____
浙江省绍兴市新昌县2023-2024学年八年级(上)学期期末数学试卷(含解析): 这是一份浙江省绍兴市新昌县2023-2024学年八年级(上)学期期末数学试卷(含解析),共20页。
浙江省绍兴市新昌县2023-2024学年八年级上学期期末数学试题(含答案): 这是一份浙江省绍兴市新昌县2023-2024学年八年级上学期期末数学试题(含答案),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年浙江省绍兴市新昌县数学九年级第一学期期末监测试题含答案: 这是一份2023-2024学年浙江省绍兴市新昌县数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。