浙江省温岭市新河中学2023-2024学年九上数学期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是( )
A.B.C.D.
2.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是( )
A.相离B.相切C.相交D.以上三种情况都有可能
3.下列成语所描述的事件是必然事件的是( )
A.守株待兔B.瓮中捉鳖C.拔苗助长D.水中捞月
4.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为( )
A.11米B.(36﹣15)米C.15米D.(36﹣10)米
5.关于x的一元二次方程x2+ax﹣1=0的根的情况是( )
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
6.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①b2﹣4ac<0;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③2a+b=0;
④当y>0时,x的取值范围是﹣1<x<3;
⑤当x>0时,y随x增大而减小.
其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
7.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为( )
A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3
8.将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是( )
A.开口向下B.经过点C.与轴只有一个交点D.对称轴是直线
9.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
A.q<16B.q>16
C.q≤4D.q≥4
10.抛物线y=﹣(x+2)2+5的顶点坐标是( )
A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(2,﹣5)
二、填空题(每小题3分,共24分)
11.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线和直线外一点.
求作:直线的垂线,使它经过.
作法:如图2.
(1)在直线上取一点,连接;
(2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,连接交于点;
(3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.
请你写出上述作垂线的依据:______.
12.某同学用描点法y=ax2+bx+c的图象时,列出了表:
由于粗心,他算错了其中一个y值,则这个错误的y值是_______.
13.计算________________.
14.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.
15.如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于点,点关于直线的对称点恰好在反比例函数的图象上,则的值是__________.
16.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.
17.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.
18.若双曲线的图象在第二、四象限内,则的取值范围是________.
三、解答题(共66分)
19.(10分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?
20.(6分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)直接写出:b的值为 ;c的值为 ;点A的坐标为 ;
(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.
①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;
②若△CDM为等腰直角三角形,直接写出点M的坐标 .
21.(6分) “垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 人,条形统计图中的值为 ;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为 ;
(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
22.(8分)(如图 1,若抛物线 l1 的顶点 A 在抛物线 l2 上,抛物线 l2 的顶点 B 也在抛物线 l1 上(点 A 与点 B 不重合).我们称抛物线 l1,l2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.
(1)如图2,抛物线 l3: 与y 轴交于点C,点D与点C关于抛物线的对称轴对称,则点 D 的坐标为 ;
(2)求以点 D 为顶点的 l3 的“友好”抛物线 l4 的表达式,并指出 l3 与 l4 中y 同时随x增大而增大的自变量的取值范围;
(3)若抛物线 y=a1(x-m)2+n 的任意一条“友好”抛物线的表达式为 y=a2(x-h)2+k, 写出 a1 与a2的关系式,并说明理由.
23.(8分)如图,要利用一面足够长的墙为一边,其余三边用总长的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽米的门,能够建生态园的场地垂直于墙的一边长不超过米(围栏宽忽略不计).
每个生态园的面积为平方米,求每个生态园的边长;
每个生态园的面积_ (填“能”或“不能”)达到平方米.(直接填答案)
24.(8分)已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):① 或② ;
(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.
(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.
25.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;
(2)画出△A1B1C1绕原点顺时针旋90°后得到 的△A2B2C2;
(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为 .
26.(10分)解方程:x2-2x-3=0
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、D
5、D
6、B
7、A
8、C
9、A
10、B
二、填空题(每小题3分,共24分)
11、直径所对的圆周角是直角
12、﹣1.
13、
14、
15、
16、
17、
18、m<8
三、解答题(共66分)
19、应该降价元.
20、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).
21、(1)60,10;(2)96°;(3)
22、(1);(2)的函数表达式为,;(3),理由详见解析
23、(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.
24、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.
25、(1)答案见解析;(2)答案见解析;(3)(1,0)
26、,
x
…
﹣2
﹣1
0
1
2
…
y
…
﹣11
﹣2
1
﹣2
﹣5
…
浙江省台州市温岭市五校联考2023-2024学年九上数学期末预测试题含答案: 这是一份浙江省台州市温岭市五校联考2023-2024学年九上数学期末预测试题含答案,共9页。试卷主要包含了下列各组图形中,一定相似的是,如图,双曲线的一个分支为等内容,欢迎下载使用。
2023-2024学年浙江省台州市温岭市九上数学期末质量检测试题含答案: 这是一份2023-2024学年浙江省台州市温岭市九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年浙江省台州市温岭市箬横镇东浦中学九上数学期末质量检测试题含答案: 这是一份2023-2024学年浙江省台州市温岭市箬横镇东浦中学九上数学期末质量检测试题含答案,共8页。试卷主要包含了下列事件中是必然发生的事件是,抛物线的顶点坐标是等内容,欢迎下载使用。