


还剩5页未读,
继续阅读
江苏省泗洪县联考2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案
展开
这是一份江苏省泗洪县联考2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么下列各式中不成立的是,二次函数y=﹣x2+2mx,有一组数据等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.反比例函数的图象经过点,则下列各点中,在这个函数图象上的是( )
A.B.C.D.
2.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
3.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为 ( )
A.(2,2)B.(2,4)C.(4,2)D.(1,2)
4.在Rt△ABC中,∠C=90°,BC=4,sinA=,则AC=( )
A.3B.4C.5D.6
5.如果,那么下列各式中不成立的是( )
A.;B.;C.;D.
6.若一次函数的图象不经过第二象限,则关于的方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
7.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是( )
A.±2B.2C.±2.5D.2.5
8.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )
A.6B.7C.8D.9
9.如图,是的直径,是的弦,已知,则的度数为( )
A.B.C.D.
10.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.
12.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.
13.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.
14.在直角坐标平面内,抛物线在对称轴的左侧部分是______的.
15.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.
16.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.
17.菱形的两条对角线长分别是6和8,则菱形的边长为_____.
18.若关于 x 的一元二次方程2x2-x+m=0 有两个相等的实数根,则 m 的值为__________.
三、解答题(共66分)
19.(10分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.
(1)用x的代数式表示该厂购进化工原料 吨;
(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;
(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?
20.(6分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.
(1)求k的值及点B的坐标;
(2)求的值.
21.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
22.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.
(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.
(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.
23.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
24.(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
25.(10分)如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.
(1)求A,D两点的坐标;
(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
26.(10分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
数据分析:样本数据的平均数、众数和中位数如下表:
得出结论:
(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、A
5、D
6、A
7、D
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、不具有
12、2
13、
14、下降
15、1
16、或
17、1
18、
三、解答题(共66分)
19、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.
20、(1)k=2,B(-1,-2);(2)2
21、(1)答案见解析;(2)
22、(1)相切,证明见解析;(2)t为s或s
23、(1)反比例函数表达式为,正比例函数表达式为;
(2),.
24、 (1) k的值为3,m的值为1;(2)025、(1)A(1,0),D(4,3);(2)①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.
26、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.
成绩/分
88
89
90
91
95
96
97
98
99
学生人数
2
1
3
2
1
2
1
平均数
众数
中位数
93
91
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.反比例函数的图象经过点,则下列各点中,在这个函数图象上的是( )
A.B.C.D.
2.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
3.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为 ( )
A.(2,2)B.(2,4)C.(4,2)D.(1,2)
4.在Rt△ABC中,∠C=90°,BC=4,sinA=,则AC=( )
A.3B.4C.5D.6
5.如果,那么下列各式中不成立的是( )
A.;B.;C.;D.
6.若一次函数的图象不经过第二象限,则关于的方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
7.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是( )
A.±2B.2C.±2.5D.2.5
8.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )
A.6B.7C.8D.9
9.如图,是的直径,是的弦,已知,则的度数为( )
A.B.C.D.
10.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.
12.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.
13.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.
14.在直角坐标平面内,抛物线在对称轴的左侧部分是______的.
15.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.
16.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.
17.菱形的两条对角线长分别是6和8,则菱形的边长为_____.
18.若关于 x 的一元二次方程2x2-x+m=0 有两个相等的实数根,则 m 的值为__________.
三、解答题(共66分)
19.(10分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.
(1)用x的代数式表示该厂购进化工原料 吨;
(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;
(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?
20.(6分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.
(1)求k的值及点B的坐标;
(2)求的值.
21.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
22.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.
(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.
(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.
23.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
24.(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
25.(10分)如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.
(1)求A,D两点的坐标;
(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
26.(10分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
数据分析:样本数据的平均数、众数和中位数如下表:
得出结论:
(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、A
5、D
6、A
7、D
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、不具有
12、2
13、
14、下降
15、1
16、或
17、1
18、
三、解答题(共66分)
19、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.
20、(1)k=2,B(-1,-2);(2)2
21、(1)答案见解析;(2)
22、(1)相切,证明见解析;(2)t为s或s
23、(1)反比例函数表达式为,正比例函数表达式为;
(2),.
24、 (1) k的值为3,m的值为1;(2)0
26、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.
成绩/分
88
89
90
91
95
96
97
98
99
学生人数
2
1
3
2
1
2
1
平均数
众数
中位数
93
91