广东省梅州市梅县2023-2024学年九年级数学第一学期期末调研试题含答案
展开这是一份广东省梅州市梅县2023-2024学年九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,属于不确定事件的有,已知,已知抛物线的解析式为y=.等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如果函数的图象与轴有公共点,那么的取值范围是( )
A.B.C.D.
2.如图所示,不能保证△ACD∽△ABC的条件是( )
A.AB:BC=AC:CDB.CD:AD=BC:ACC.CD2=ADDCD.AC2=ABAD
3.二次函数y=(x﹣4)2+2图象的顶点坐标是( )
A.(﹣4,2)B.(4,﹣2)C.(4,2)D.(﹣4,﹣2)
4.如图所示,抛物线y=ax2-x+c(a>0)的对称轴是直线x=1,且图像经过点 (3,0),则a+c的值为( )
A.0B.-1C.1D.2
5.下列事件中,属于不确定事件的有( )
①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.
A.①②③ B.①③④ C.②③④ D.①②④
6.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )
A.x<﹣2B.﹣2<x<4C.x>0D.x>4
7.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:
①∠BAE=30°;
②射线FE是∠AFC的角平分线;
③CF=CD;
④AF=AB+CF.
其中正确结论的个数为( )
A.1 个B.2 个C.3 个D.4 个
8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为 1.6 m,并测得BC=2.2 m ,CA=0.8 m, 那么树DB的高度是( )
A.6 mB.5.6 mC.5.4 mD.4.4 m
9.已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).
A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)
10.如图,,是四边形的对角线,点,分别是,的中点,点,分别是,的中点,连接,,,,要使四边形为正方形,则需添加的条件是( )
A.,B.,
C.,D.,
二、填空题(每小题3分,共24分)
11.如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于_____度.
12.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.
13.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)
①小红的运动路程比小兰的长;② 两人分别在1.09秒和7.49秒的时刻相遇;③ 当小红运动到点D的时候,小兰已经经过了点D ;④在4.84秒时,两人的距离正好等于⊙O的半径.
14.已知抛物线的对称轴是y轴,且经过点(1,3)、(2,6),则该抛物线的解析式为_____.
15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是_____.
16.如图,在中,则AB的长为________(用含α和b的代数式表示)
17.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.
18.如图,是正三角形,D、E分别是BC、AC 上的点,当=_______时,~.
三、解答题(共66分)
19.(10分)如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
20.(6分)如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,
(1)求证:直线CD是⊙O的切线.
(2)求证:△FEC是等腰三角形
21.(6分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.
22.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
23.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D ,BE⊥AB,垂足为B,BE=CD连接CE,DE.
(1)求证:四边形CDBE是矩形
(2)若AC=2 ,∠ABC=30°,求DE的长
24.(8分)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;
(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.
25.(10分)一个不透明袋子中装有2个白球,3个黄球,除颜色外其它完全相同.将球摇匀后,从中摸出一个球不放回,再随机摸出一球,两次摸到的球颜色相同的概率是______.
26.(10分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系
(1)求关于的函数关系式.
(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、B
5、C
6、B
7、B
8、A
9、B
10、A
二、填空题(每小题3分,共24分)
11、30
12、12
13、④
14、y=x1+1
15、m≥﹣1
16、.
17、
18、60°
三、解答题(共66分)
19、.
20、(1)证明见解析;(2)证明见解析.
21、
22、(1);(2) .
23、(1)见详解,(2)DE =2
24、(1)y=﹣x2+2x+3;(2)2;(3)存在,理由见解析.
25、
26、(1);(2)当x=10万元时,最大月获利为7万元
相关试卷
这是一份广东省梅州市梅县区2023-2024学年九年级上学期数学期末试题,共4页。
这是一份2023-2024学年广东省梅州市梅县区九年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份广东省梅州市梅县区2023-2024学年八年级上学期期末数学试题(含答案),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。