山西省朔州市朔城区2023-2024学年数学九上期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点( )
A.(1,0)B.(1,8)C.(1,﹣1)D.(1,﹣6)
2.如果将抛物线y=x2向上平移1个单位,那么所得抛物线对应的函数关系式是( )
A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2
3.如图,的顶点均在上,若,则的度数为( )
A.B.C.D.
4.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于( )
A.50°B.60°C.65°D.75°
5.下列图形中既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6.二次函数的图象向左平移个单位,得到新的图象的函数表达式是( )
A.B.
C.D.
7.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是( )
A.B.C.6D.10
8.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为( )
A.1B.2C.3D.9
9.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有( )
A.1个B.2C.3个D.4个
10.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点,且当时,函数的最小值为﹣3,最大值为1,则m的取值范围是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如果,那么= .
12.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.
13.如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.
14.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______.
15.如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.
16.已知,则的值为______.
17.如图,某景区想在一个长,宽的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为,如果横向小桥的宽为,那么可列出关于的方程为__________.(方程不用整理)
18.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.
三、解答题(共66分)
19.(10分)已知反比例函数的图像经过点(2,-3).
(1)求这个函数的表达式.
(2)点(-1,6),(3,2)是否在这个函数的图像上?
(3)这个函数的图像位于哪些象限?函数值y随自变量的增大如何变化?
20.(6分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.
(1)求,的值;
(2)求二次函数图象的对称轴和顶点坐标.
21.(6分)已知二次函数y=x2+4x+k-1.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
22.(8分)如图1,中,是的高.
(1)求证:.
(2)与相似吗?为什么?
(3)如图2,设的中点为的中点为,连接,求的长.
23.(8分)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米.
(1)求与的函数关系式及值的取值范围;
(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
24.(8分)某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)当每件衬衫降价多少元时,商场每天获利最大,每天获利最大是多少元?
25.(10分)一个不透明的箱子里放有2个白球,1个黑球和1个红球,它们除颜色外其余都相同.箱子里摸出1个球后不放回,摇匀后再摸出1个球,求两次摸到的球都是白球的概率。(请用列表或画树状图等方法)
26.(10分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°
(1)求舞台的高AC(结果保留根号)
(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、D
4、C
5、C
6、C
7、C
8、C
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、.
13、
14、.
15、2π+2﹣4
16、
17、
18、
三、解答题(共66分)
19、(1)y=-;(2)(-1,6)在函数图像上,(3,2)不在函数图像上;(3)二、四象限,在每个象限内,y随x的增大而增大.
20、(1),;(2)对称轴为直线,顶点坐标.
21、k<1;k=1.
22、(1)见解析;(2),理由见解析;(3)
23、(1);(2)当时,有最大值,最大值是,当时,有最小值,最小值是
24、(1)每件应该降价20元;(2)当每件降价15元时,每天获利最大,且获利1250元
25、
26、(1)m;(2)不需拆除文化墙PM,理由见解析.
2023-2024学年山西省朔州市朔城区数学九年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年山西省朔州市朔城区数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了下列事件为必然事件的是等内容,欢迎下载使用。
山西省朔州市右玉县2023-2024学年九上数学期末统考模拟试题含答案: 这是一份山西省朔州市右玉县2023-2024学年九上数学期末统考模拟试题含答案,共10页。
2023-2024学年山西省朔州市朔城区第四中学数学九年级第一学期期末统考试题含答案: 这是一份2023-2024学年山西省朔州市朔城区第四中学数学九年级第一学期期末统考试题含答案,共7页。试卷主要包含了一元二次方程x2=-3x的解是,的相反数是,下列事件中,属于必然事件的是等内容,欢迎下载使用。