广东省揭阳市产业园区2023-2024学年数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
2.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为( )
A.8B.10C.12D.15
3.如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为( )
A.米B.米C.米D.米
4.矩形、菱形、正方形都一定具有的性质是( )
A.邻边相等B.四个角都是直角
C.对角线相等D.对角线互相平分
5.如图,,直线与这三条平行线分别交于点和点.已知AB=1,BC=3,DE=1.2,则DF的长为( )
A.B.C.D.
6.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是( )
A.nB.n-1
C.4nD.4(n-1)
7.二次函数图像的顶点坐标是( )
A.B.C.D.
8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A.B.
C.D.
9.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是( )
A.BM>DNB.BM<DNC.BM=DND.无法确定
10.关于二次函数,下列说法错误的是( )
A.它的图象开口方向向上B.它的图象顶点坐标为(0,4)
C.它的图象对称轴是y轴D.当时,y有最大值4
二、填空题(每小题3分,共24分)
11.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).
12.若,则=____.
13.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
14.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.
15.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.
16.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.
17.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________
18.如图,在半径为5的中,弦,,垂足为点,则的长为__________.
三、解答题(共66分)
19.(10分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C. 抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.
(1) 求抛物线的解析式和对称轴;
(1) 求∠DAO的度数和△PCO的面积;
(3) 在图1中,连接PA,点Q 是PA 的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究: 是否存在点P,使得 ,若存在,请求点P的坐标;若不存在,请说明理由.
20.(6分)先化简:,再求代数式的值,其中是方程的一个根.
21.(6分)如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.
(1)请直接写出CM和EM的数量关系和位置关系;
(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
22.(8分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.
23.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.
(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
24.(8分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.
(1)如图1,在对半四边形中,,求与的度数之和;
(2)如图2,为锐角的外心,过点的直线交,于点,,,求证:四边形是对半四边形;
(3)如图3,在中,,分别是,上一点,,,为的中点,,当为对半四边形的对半线时,求的长.
25.(10分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.
(1)甲运动后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
26.(10分)如图,⊙中,弦与相交于点,,连接.
求证:⑴;
⑵.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、B
4、D
5、B
6、B
7、D
8、C
9、C
10、D
二、填空题(每小题3分,共24分)
11、15π
12、
13、y=2(x+3)2+1
14、(47,)
15、1
16、1
17、1
18、4
三、解答题(共66分)
19、(1);;(1)45°;;(3)存在,
20、;1.
21、(1)CM=EM,CM⊥EM;(2)成立,理由见解析;(3)成立,理由见解析.
22、AB=2cm
23、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).
24、(1);(2)详见解析;(3)5.25.
25、(1)28cm;(2)3s;(3)7s
26、(1)见解析;(2)见解析.
2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,若两个相似三角形的周长之比是1等内容,欢迎下载使用。
2023-2024学年广东省惠州市九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年广东省惠州市九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,在单词prbability等内容,欢迎下载使用。
2023-2024学年广东省广州各区数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省广州各区数学九上期末质量跟踪监视模拟试题含答案,共10页。试卷主要包含了已知,下列说法中,不正确的是,下列说法错误的是等内容,欢迎下载使用。