2023-2024学年广东省广州各区数学九上期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.反比例函数与正比例函数在同一坐标系中的大致图象可能是( )
A.B.
C.D.
2.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为( )
A.1.1米B.1.5米C.1.9米D.2.3米
3.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为( )
A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4
4.如图,在中,若,则的长是( )
A.B.C.D.
5.如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON=6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=( )
A.2B.3C.D.
6.已知,下列说法中,不正确的是( )
A.B.与方向相同
C.D.
7.已知关于的一元二次方程的一个根是2,则的值为( )
A.-1B.1C.-2D.2
8.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有( )
A.1个
B.2个
C.3个
D.4个
9.下列说法错误的是( )
A.必然事件的概率为1B.心想事成,万事如意是不可能事件
C.平分弦(非直径)的直径垂直弦D.的平方根是
10.一个长方形的面积为,且一边长为,则另一边的长为( )
A.B.C.D.
11.下列4个图形中,是中心对称图形但不是轴对称图形的是()
A.B.C.D.
12.若均为锐角,且,则( ).
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,在中,平分交于点,垂足为点,则__________.
14.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.
15.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.
16.圆心角是60°且半径为2的扇形面积是______
17.若关于x的一元二次方程有一个根为0,则m的值等于___.
18.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为_____.
三、解答题(共78分)
19.(8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)
20.(8分)已知关于的一元二次方程有两个不相等的实数根,.
(1)求的最小整数值;
(2)当时,求的值.
21.(8分)如图,抛物线交轴于点和点,交轴于点.
(1)求这个抛物线的函数表达式;
(2)若点的坐标为,点为第二象限内抛物线上的一个动点,求四边形面积的最大值.
22.(10分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.
(1)有序数组所对应的码放的几何体是______________;
A.B.C.D.
(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.
(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:
根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)
(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______, ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)
23.(10分)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.
(1)求双曲线和直线的解析式;
(2)直接写出不等式的解集.
24.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
25.(12分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.
(1)如图①,当时,求点的坐标;
(2)如图②,当点落在的延长线上时,求点的坐标;
(3)当点落在线段上时,求点的坐标(直接写出结果即可).
26.(12分)在中,,,,点从出发沿方向在运动速度为3个单位/秒,点从出发向点运动,速度为1个单位/秒,、同时出发,点到点时两点同时停止运动.
(1)点在线段上运动,过作交边于,时,求的值;
(2)运动秒后,,求此时的值;
(3)________时,.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、C
4、B
5、D
6、A
7、D
8、C
9、B
10、A
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、
15、1
16、
17、m=-1
18、2(1+x)+2(1+x)2=1.
三、解答题(共78分)
19、A处与灯塔B相距109海里.
20、(1)1;(2)
21、 (1);(2)的最大值为.
22、 (1) B;(2) 2,3,2 , 1 ;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2
23、(1)双曲线的解析式为,直线的解析式为y=﹣2x﹣4;(2)﹣3<x<0或x>1.
24、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.
25、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.
26、(1)2;(2)或;(3)
几何体有序数组
单位长方体的个数
表面上面积为S1的个数
表面上面积为S2的个数
表面上面积为S3的个数
表面积
广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知如图,的倒数是,下列命题是真命题的个数是等内容,欢迎下载使用。
2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,若两个相似三角形的周长之比是1等内容,欢迎下载使用。
2023-2024学年广东省惠州市九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年广东省惠州市九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,在单词prbability等内容,欢迎下载使用。