山东省曹县2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.抛物线y=﹣(x+1)2﹣3的顶点坐标是( )
A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)
2.关于的二次方程的一个根是0,则a的值是( )
A.1B.-1C.1或-1D.0.5
3.下列图标中,是中心对称图形的是( )
A.B.C.D.
4. “学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )
A.B.C.D.
5.一个群里共有个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程( )
A.B.C.D.
6.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为( )
A.B.C.D.
7.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是( )
A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5
8.反比例函数y=的图象位于( )
A.第一、三象限B.第二、三象限
C.第一、二象限D.第二、四象限
9.如图,是的直径,点,在上,连接,,,如果,那么的度数是( )
A.B.C.D.
10.若反比例函数y= 的图象经过点(2,﹣1),则k的值为( )
A.﹣2B.2C.﹣D.
二、填空题(每小题3分,共24分)
11.如图,在扇形OAB中,∠AOB=90°,半径OA=1.将扇形OAB沿过点B的直线折叠.点 O恰好落在延长线上点D处,折痕交OA于点C,整个阴影部分的面积_____.
12.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).
13.在△ABC中,∠ABC = 30°,AB = ,AC =1,则∠ACB 的度数为____________.
14.函数中,自变量的取值范围是_____.
15.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.
16.将抛物线 y=(x+2)25向右平移2个单位所得抛物线解析式为_____.
17.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.
18.已知函数是反比例函数,则的值为__________.
三、解答题(共66分)
19.(10分)平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为,,点D是经过点B,C的抛物线的顶点.
(1)求抛物线的解析式;
(2)点E是(1)中抛物线对称轴上一动点,求当△EAB的周长最小时点E的坐标;
(3)平移抛物线,使抛物线的顶点始终在直线CD上移动,若平移后的抛物线与射线BD只有一个公共点,直接写出平移后抛物线顶点的横坐标的值或取值范围.
20.(6分)已知函数,与x成正比例,与x成反比例,且当时,;当时,.求y与x的函数表达式.
21.(6分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
22.(8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)
23.(8分)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.
24.(8分)若的整数部分为,小数部分为;
(1)直接写出_________,__________;
(2)计算的值.
25.(10分)在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.
(1)当抛物线经过点A时,顶点P的坐标为 ;
(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.
①如图1,连接QA、QC,求△QAC的面积最大值;
②如图2,若∠CBQ=45°,请求出此时点Q坐标.
26.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).
(1)求证:直线l恒过抛物线C的顶点;
(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.
(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、A
5、B
6、B
7、A
8、A
9、C
10、A
二、填空题(每小题3分,共24分)
11、9π﹣12.
12、
13、60°或120°.
14、
15、 (﹣1,1) (1,3)
16、y=x2−1
17、
18、1
三、解答题(共66分)
19、(1);(2);(3)或
20、.
21、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
22、(1)点B距水平面AE的高度BH为5米.
(2)宣传牌CD高约2.7米.
23、 (1)见解析;(2)4.8cm,MN=9.6cm.
24、(1),;(2).
25、(1)(﹣1,4);(2)①;②Q(﹣,).
26、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.
山东省临朐市2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份山东省临朐市2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了点P在双曲线上,则k的值为,下列各点在反比例函数图象上的是等内容,欢迎下载使用。
2023-2024学年山东省青岛市南区数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省青岛市南区数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了的值等于等内容,欢迎下载使用。
2023-2024学年山东省枣庄数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省枣庄数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了抛物线y=的对称轴方程为等内容,欢迎下载使用。